__version__ = "1.2.0" # Work around to update TensorFlow's absl.logging threshold which alters the # default Python logging output behavior when present. # see: https://github.com/abseil/abseil-py/issues/99 # and: https://github.com/tensorflow/tensorflow/issues/26691#issuecomment-500369493 try: import absl.logging absl.logging.set_verbosity('info') absl.logging.set_stderrthreshold('info') absl.logging._warn_preinit_stderr = False except: pass import logging logger = logging.getLogger(__name__) # pylint: disable=invalid-name # Tokenizer from .tokenization_utils import (PreTrainedTokenizer) from .tokenization_auto import AutoTokenizer from .tokenization_bert import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .tokenization_openai import OpenAIGPTTokenizer from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus) from .tokenization_gpt2 import GPT2Tokenizer from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE from .tokenization_xlm import XLMTokenizer from .tokenization_roberta import RobertaTokenizer from .tokenization_distilbert import DistilBertTokenizer # Configurations from .configuration_utils import PretrainedConfig from .configuration_auto import AutoConfig from .configuration_bert import BertConfig, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_openai import OpenAIGPTConfig, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_transfo_xl import TransfoXLConfig, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_gpt2 import GPT2Config, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_xlnet import XLNetConfig, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_xlm import XLMConfig, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_roberta import RobertaConfig, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_distilbert import DistilBertConfig, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # Modeling try: import torch _torch_available = True # pylint: disable=invalid-name except ImportError: _torch_available = False # pylint: disable=invalid-name if _torch_available: logger.info("PyTorch version {} available.".format(torch.__version__)) from .modeling_utils import (PreTrainedModel, prune_layer, Conv1D) from .modeling_auto import (AutoModel, AutoModelForSequenceClassification, AutoModelForQuestionAnswering, AutoModelWithLMHead) from .modeling_bert import (BertPreTrainedModel, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification, BertForQuestionAnswering, load_tf_weights_in_bert, BERT_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_openai import (OpenAIGPTPreTrainedModel, OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, load_tf_weights_in_openai_gpt, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_transfo_xl import (TransfoXLPreTrainedModel, TransfoXLModel, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl, TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_gpt2 import (GPT2PreTrainedModel, GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel, load_tf_weights_in_gpt2, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_xlnet import (XLNetPreTrainedModel, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering, load_tf_weights_in_xlnet, XLNET_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_xlm import (XLMPreTrainedModel , XLMModel, XLMWithLMHeadModel, XLMForSequenceClassification, XLMForQuestionAnswering, XLM_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_roberta import (RobertaForMaskedLM, RobertaModel, RobertaForSequenceClassification, ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_distilbert import (DistilBertForMaskedLM, DistilBertModel, DistilBertForSequenceClassification, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP) # Optimization from .optimization import (AdamW, ConstantLRSchedule, WarmupConstantSchedule, WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule) # TensorFlow try: import tensorflow as tf assert int(tf.__version__[0]) >= 2 _tf_available = True # pylint: disable=invalid-name except ImportError: _tf_available = False # pylint: disable=invalid-name if _tf_available: logger.info("TensorFlow version {} available.".format(tf.__version__)) from .modeling_tf_utils import TFPreTrainedModel from .modeling_tf_auto import (TFAutoModel, TFAutoModelForSequenceClassification, TFAutoModelForQuestionAnswering, TFAutoModelWithLMHead) from .modeling_tf_bert import (TFBertPreTrainedModel, TFBertModel, TFBertForPreTraining, TFBertForMaskedLM, TFBertForNextSentencePrediction, TFBertForSequenceClassification, TFBertForMultipleChoice, TFBertForTokenClassification, TFBertForQuestionAnswering, load_bert_pt_weights_in_tf, TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP) # Files and general utilities from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE, cached_path, add_start_docstrings, add_end_docstrings, WEIGHTS_NAME, TF_WEIGHTS_NAME, CONFIG_NAME) def is_torch_available(): return _torch_available def is_tf_available(): return _tf_available