# Copyright 2022 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import logging import os import tempfile import unittest import warnings from huggingface_hub import HfFolder, create_pull_request from parameterized import parameterized from transformers import AutoConfig, GenerationConfig, WatermarkingConfig, is_torch_available from transformers import logging as transformers_logging if is_torch_available(): import torch from transformers.generation import ( ClassifierFreeGuidanceLogitsProcessor, EncoderNoRepeatNGramLogitsProcessor, EncoderRepetitionPenaltyLogitsProcessor, EpsilonLogitsWarper, EtaLogitsWarper, ExponentialDecayLengthPenalty, ForcedBOSTokenLogitsProcessor, ForcedEOSTokenLogitsProcessor, GenerationMode, HammingDiversityLogitsProcessor, MinLengthLogitsProcessor, MinNewTokensLengthLogitsProcessor, MinPLogitsWarper, NoBadWordsLogitsProcessor, NoRepeatNGramLogitsProcessor, PrefixConstrainedLogitsProcessor, RepetitionPenaltyLogitsProcessor, SequenceBiasLogitsProcessor, SuppressTokensAtBeginLogitsProcessor, SuppressTokensLogitsProcessor, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper, UnbatchedClassifierFreeGuidanceLogitsProcessor, WatermarkLogitsProcessor, ) from transformers.testing_utils import ( TOKEN, CaptureLogger, LoggingLevel, TemporaryHubRepo, is_staging_test, torch_device, ) class GenerationConfigTest(unittest.TestCase): @parameterized.expand([(None,), ("foo.json",)]) def test_save_load_config(self, config_name): config = GenerationConfig( do_sample=True, temperature=0.7, length_penalty=1.0, bad_words_ids=[[1, 2, 3], [4, 5]], ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(tmp_dir, config_name=config_name) loaded_config = GenerationConfig.from_pretrained(tmp_dir, config_name=config_name) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample, True) self.assertEqual(loaded_config.temperature, 0.7) self.assertEqual(loaded_config.length_penalty, 1.0) self.assertEqual(loaded_config.bad_words_ids, [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k, 50) self.assertEqual(loaded_config.max_length, 20) self.assertEqual(loaded_config.max_time, None) def test_from_model_config(self): model_config = AutoConfig.from_pretrained("openai-community/gpt2") generation_config_from_model = GenerationConfig.from_model_config(model_config) default_generation_config = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(generation_config_from_model, default_generation_config) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id, default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id, model_config.eos_token_id) def test_update(self): generation_config = GenerationConfig() update_kwargs = { "max_new_tokens": 1024, "foo": "bar", } update_kwargs_copy = copy.deepcopy(update_kwargs) unused_kwargs = generation_config.update(**update_kwargs) # update_kwargs was not modified (no side effects) self.assertEqual(update_kwargs, update_kwargs_copy) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens, 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(unused_kwargs, {"foo": "bar"}) def test_kwarg_init(self): """Tests that we can overwrite attributes at `from_pretrained` time.""" default_config = GenerationConfig() self.assertEqual(default_config.temperature, 1.0) self.assertEqual(default_config.do_sample, False) self.assertEqual(default_config.num_beams, 1) config = GenerationConfig( do_sample=True, temperature=0.7, length_penalty=1.0, bad_words_ids=[[1, 2, 3], [4, 5]], ) self.assertEqual(config.temperature, 0.7) self.assertEqual(config.do_sample, True) self.assertEqual(config.num_beams, 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(tmp_dir) loaded_config = GenerationConfig.from_pretrained(tmp_dir, temperature=1.0) self.assertEqual(loaded_config.temperature, 1.0) self.assertEqual(loaded_config.do_sample, True) self.assertEqual(loaded_config.num_beams, 1) # default value def test_validate(self): """ Tests that the `validate` method is working as expected. Note that `validate` is called at initialization time """ logger = transformers_logging.get_logger("transformers.generation.configuration_utils") # A correct configuration will not throw any warning with CaptureLogger(logger) as captured_logs: GenerationConfig() self.assertEqual(len(captured_logs.out), 0) # Inconsequent but technically wrong configuration will throw a warning (e.g. setting sampling # parameters with `do_sample=False`). May be escalated to an error in the future. with CaptureLogger(logger) as captured_logs: GenerationConfig(return_dict_in_generate=False, output_scores=True) self.assertNotEqual(len(captured_logs.out), 0) with CaptureLogger(logger) as captured_logs: generation_config_bad_temperature = GenerationConfig(do_sample=False, temperature=0.5) # store for later self.assertNotEqual(len(captured_logs.out), 0) # Expanding on the case above, we can update a bad configuration to get rid of the warning. Ideally, # that is done by unsetting the parameter (i.e. setting it to None) with CaptureLogger(logger) as captured_logs: # BAD - 0.9 means it is still set, we should warn generation_config_bad_temperature.update(temperature=0.9) self.assertNotEqual(len(captured_logs.out), 0) with CaptureLogger(logger) as captured_logs: # CORNER CASE - 1.0 is the default, we can't detect whether it is set by the user or not, we shouldn't warn generation_config_bad_temperature.update(temperature=1.0) self.assertEqual(len(captured_logs.out), 0) with CaptureLogger(logger) as captured_logs: # OK - None means it is unset, nothing to warn about generation_config_bad_temperature.update(temperature=None) self.assertEqual(len(captured_logs.out), 0) # Impossible sets of constraints/parameters will raise an exception with self.assertRaises(ValueError): GenerationConfig(do_sample=False, num_beams=1, num_return_sequences=2) with self.assertRaises(ValueError): # dummy constraint GenerationConfig(do_sample=True, num_beams=2, constraints=["dummy"]) with self.assertRaises(ValueError): GenerationConfig(do_sample=True, num_beams=2, force_words_ids=[[[1, 2, 3]]]) # Passing `generate()`-only flags to `validate` will raise an exception with self.assertRaises(ValueError): GenerationConfig(logits_processor="foo") # Model-specific parameters will NOT raise an exception or a warning with CaptureLogger(logger) as captured_logs: GenerationConfig(foo="bar") self.assertEqual(len(captured_logs.out), 0) # By default we throw a short warning. However, we log with INFO level the details. # Default: we don't log the incorrect input values, only a short summary. We explain how to get more details. with LoggingLevel(logging.WARNING): with CaptureLogger(logger) as captured_logs: GenerationConfig(do_sample=False, temperature=0.5) self.assertNotIn("0.5", captured_logs.out) self.assertTrue(len(captured_logs.out) < 150) # short log self.assertIn("Set `TRANSFORMERS_VERBOSITY=info` for more details", captured_logs.out) # INFO level: we share the full deets with LoggingLevel(logging.INFO): with CaptureLogger(logger) as captured_logs: GenerationConfig(do_sample=False, temperature=0.5) self.assertIn("0.5", captured_logs.out) self.assertTrue(len(captured_logs.out) > 400) # long log self.assertNotIn("Set `TRANSFORMERS_VERBOSITY=info` for more details", captured_logs.out) # Finally, we can set `strict=True` to raise an exception on what would otherwise be a warning. generation_config = GenerationConfig() generation_config.temperature = 0.5 generation_config.do_sample = False with self.assertRaises(ValueError): generation_config.validate(strict=True) def test_refuse_to_save(self): """Tests that we refuse to save a generation config that fails validation.""" # setting the temperature alone is invalid, as we also need to set do_sample to True -> throws a warning that # is caught, doesn't save, and raises an exception config = GenerationConfig() config.temperature = 0.5 with tempfile.TemporaryDirectory() as tmp_dir: with self.assertRaises(ValueError) as exc: config.save_pretrained(tmp_dir) self.assertTrue("Fix these issues to save the configuration." in str(exc.exception)) self.assertTrue("`temperature` is set to `0.5`" in str(exc.exception)) self.assertTrue(len(os.listdir(tmp_dir)) == 0) # greedy decoding throws an exception if we try to return multiple sequences -> throws an exception that is # caught, doesn't save, and raises a warning config = GenerationConfig() config.num_return_sequences = 2 with tempfile.TemporaryDirectory() as tmp_dir: with self.assertRaises(ValueError) as exc: config.save_pretrained(tmp_dir) self.assertTrue("Fix these issues to save the configuration." in str(exc.exception)) self.assertTrue( "Greedy methods without beam search do not support `num_return_sequences` different than 1" in str(exc.exception) ) self.assertTrue(len(os.listdir(tmp_dir)) == 0) # Final check: no logs at warning level/warnings/exceptions thrown if it is correct, and file is saved. config = GenerationConfig() with tempfile.TemporaryDirectory() as tmp_dir: # Catch warnings with warnings.catch_warnings(record=True) as captured_warnings: # Catch logs (up to WARNING level, the default level) with LoggingLevel(logging.WARNING): logger = transformers_logging.get_logger("transformers.generation.configuration_utils") with CaptureLogger(logger) as captured_logs: config.save_pretrained(tmp_dir) self.assertEqual(len(captured_warnings), 0) self.assertEqual(len(captured_logs.out), 0) self.assertEqual(len(os.listdir(tmp_dir)), 1) def test_generation_mode(self): """Tests that the `get_generation_mode` method is working as expected.""" config = GenerationConfig() self.assertEqual(config.get_generation_mode(), GenerationMode.GREEDY_SEARCH) config = GenerationConfig(do_sample=True) self.assertEqual(config.get_generation_mode(), GenerationMode.SAMPLE) config = GenerationConfig(num_beams=2) self.assertEqual(config.get_generation_mode(), GenerationMode.BEAM_SEARCH) config = GenerationConfig(top_k=10, do_sample=False, penalty_alpha=0.6) self.assertEqual(config.get_generation_mode(), GenerationMode.CONTRASTIVE_SEARCH) config = GenerationConfig() self.assertEqual(config.get_generation_mode(assistant_model="foo"), GenerationMode.ASSISTED_GENERATION) def test_static_cache_without_cache_config(self): """Regression test for #35026 -- static cache should work without a cache config.""" config = GenerationConfig(cache_implementation="static") self.assertEqual(config.cache_implementation, "static") self.assertEqual(config.cache_config, None) class GenerationConfigSerializationTest(unittest.TestCase): def test_serialize_generation_sequence_bias(self): """Tests that GenerationConfig is serialized and SequenceBiasLogitsProcessor is initialized with sequence_bias parameter""" generation_config = GenerationConfig() sequence_bias = [[[45, 67], -0.6], [[89], 1.2]] generation_config.sequence_bias = sequence_bias with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertSequenceEqual(new_config.sequence_bias, sequence_bias) expected_sequence_bias = {(45, 67): -0.6, (89,): 1.2} bias_logits_processor = SequenceBiasLogitsProcessor(new_config.sequence_bias) self.assertDictEqual(bias_logits_processor.sequence_bias, expected_sequence_bias) def test_serialize_generation_min_length_eos_token(self): """Tests that GenerationConfig is serialized and MinLengthLogitsProcessor is initialized with min_length and eos_token_id""" eos_token_id = 0 min_length = 10 generation_config = GenerationConfig(min_length=min_length, eos_token_id=eos_token_id) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.min_length, min_length) self.assertEqual(new_config.eos_token_id, eos_token_id) min_dist_processor = MinLengthLogitsProcessor( min_length=new_config.min_length, eos_token_id=new_config.eos_token_id ) self.assertEqual(min_dist_processor.min_length, min_length) self.assertEqual(min_dist_processor.eos_token_id, eos_token_id) def test_serialize_generation_min_new_tokens(self): """Tests that GenerationConfig is serialized and MinNewTokensLengthLogitsProcessor is initialized with min_new_tokens""" eos_token_id = 0 min_new_tokens = 5 prompt_length_to_skip = 2 generation_config = GenerationConfig(min_new_tokens=min_new_tokens) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.min_new_tokens, min_new_tokens) min_new_tokens_processor = MinNewTokensLengthLogitsProcessor( prompt_length_to_skip=prompt_length_to_skip, min_new_tokens=new_config.min_new_tokens, eos_token_id=eos_token_id, ) self.assertEqual(min_new_tokens_processor.min_new_tokens, min_new_tokens) def test_serialize_generation_temperature(self): """Tests that GenerationConfig is serialized and TemperatureLogitsWarper is initialized with temperature""" temperature = 2.0 generation_config = GenerationConfig(temperature=temperature, do_sample=True) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.temperature, temperature) temperature_logits_warper = TemperatureLogitsWarper(temperature=new_config.temperature) self.assertEqual(temperature_logits_warper.temperature, temperature) def test_serialize_generation_repetition_penalty(self): """Tests that GenerationConfig is serialized and RepetitionPenaltyLogitsProcessor is initialized with repetition_penalty""" penalty = 2.0 generation_config = GenerationConfig(repetition_penalty=penalty) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.repetition_penalty, penalty) rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=new_config.repetition_penalty) self.assertEqual(rep_penalty_proc.penalty, penalty) def test_serialize_generation_encoder_repetition_penalty(self): """Tests that GenerationConfig is serialized and EncoderRepetitionPenaltyLogitsProcessor is initialized with penalty and input_ids""" penalty = 2.0 input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long) generation_config = GenerationConfig(encoder_repetition_penalty=penalty) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.encoder_repetition_penalty, penalty) rep_penalty_proc = EncoderRepetitionPenaltyLogitsProcessor( penalty=new_config.encoder_repetition_penalty, encoder_input_ids=input_ids ) self.assertEqual(rep_penalty_proc.penalty, 1 / penalty) torch.testing.assert_close(rep_penalty_proc.encoder_input_ids, input_ids) def test_serialize_generation_top_p(self): """Tests that GenerationConfig is serialized and TopPLogitsWarper is initialized with top_p""" top_p = 0.8 generation_config = GenerationConfig(top_p=top_p, do_sample=True) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.top_p, top_p) rep_penalty_proc = TopPLogitsWarper(top_p=new_config.top_p) self.assertEqual(rep_penalty_proc.top_p, top_p) def test_serialize_generation_top_k(self): """Tests that GenerationConfig is serialized and TopKLogitsWarper is initialized with top_k""" top_k = 2 generation_config = GenerationConfig(top_k=top_k, do_sample=True) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.top_k, top_k) top_k_logits_wrap = TopKLogitsWarper(top_k=new_config.top_k) self.assertEqual(top_k_logits_wrap.top_k, top_k) def test_serialize_generation_min_p(self): """Tests that GenerationConfig is serialized and MinPLogitsWarper is initialized with min_p""" min_p = 0.8 generation_config = GenerationConfig(min_p=min_p, do_sample=True) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.min_p, min_p) min_k_logits_wrap = MinPLogitsWarper(min_p=new_config.min_p) self.assertEqual(min_k_logits_wrap.min_p, min_p) def test_serialize_generation_typical_p(self): """Tests that GenerationConfig is serialized and TypicalLogitsWarper is initialized with mass""" mass = 0.8 generation_config = GenerationConfig(typical_p=mass, do_sample=True) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.typical_p, mass) typical_p_logits_wrap = TypicalLogitsWarper(mass=new_config.typical_p) self.assertEqual(typical_p_logits_wrap.mass, mass) def test_serialize_generation_epsilon_cutoff(self): """Tests that GenerationConfig is serialized and EpsilonLogitsWarper is initialized with epsilon""" epsilon = 0.8 generation_config = GenerationConfig(epsilon_cutoff=epsilon, do_sample=True) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.epsilon_cutoff, epsilon) epsilon_logits_wrap = EpsilonLogitsWarper(epsilon=new_config.epsilon_cutoff) self.assertEqual(epsilon_logits_wrap.epsilon, epsilon) def test_serialize_generation_eta_cutoff(self): """Tests that GenerationConfig is serialized and EtaLogitsWarper is initialized with epsilon""" epsilon = 0.8 generation_config = GenerationConfig(eta_cutoff=epsilon, do_sample=True) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.eta_cutoff, epsilon) eta_logits_wrap = EtaLogitsWarper(epsilon=new_config.eta_cutoff) self.assertEqual(eta_logits_wrap.epsilon, epsilon) def test_serialize_generation_ngram_size(self): """Tests that GenerationConfig is serialized and NoRepeatNGramLogitsProcessor is initialized with ngram_size""" ngram_size = 2 generation_config = GenerationConfig(no_repeat_ngram_size=ngram_size, do_sample=True) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.no_repeat_ngram_size, ngram_size) no_repeat_ngram_proc = NoRepeatNGramLogitsProcessor(ngram_size=new_config.no_repeat_ngram_size) self.assertEqual(no_repeat_ngram_proc.ngram_size, ngram_size) def test_serialize_generation_encoder_ngram_size(self): """Tests that GenerationConfig is serialized and EncoderNoRepeatNGramLogitsProcessor is initialized with ngram_size""" ngram_size = 2 input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long) generation_config = GenerationConfig(encoder_no_repeat_ngram_size=ngram_size, do_sample=True) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.encoder_no_repeat_ngram_size, ngram_size) encoder_no_repeat_ngram_proc = EncoderNoRepeatNGramLogitsProcessor( encoder_ngram_size=new_config.encoder_no_repeat_ngram_size, encoder_input_ids=input_ids ) self.assertEqual(encoder_no_repeat_ngram_proc.ngram_size, ngram_size) def test_serialize_generation_bad_words_ids(self): """Tests that GenerationConfig is serialized and NoBadWordsLogitsProcessor is initialized with bad_words_ids""" bad_word_tokens = [[1], [4], [1, 0], [0, 1, 2], [1, 3, 1, 3]] generation_config = GenerationConfig(bad_words_ids=bad_word_tokens) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertSequenceEqual(new_config.bad_words_ids, bad_word_tokens) no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=new_config.bad_words_ids) self.assertSequenceEqual(no_bad_words_dist_proc.bad_word_ids, bad_word_tokens) def test_serialize_generation_num_beams(self): """Tests that GenerationConfig is serialized and PrefixConstrainedLogitsProcessor is initialized with num_beams""" num_beams = 1 def prefix_allowed_tokens_fn(batch_id, inputs_ids): return [[0, 1], [2, 3]][batch_id] generation_config = GenerationConfig(num_beams=num_beams) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.num_beams, num_beams) prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor( prefix_allowed_tokens_fn, num_beams=new_config.num_beams ) self.assertEqual(prefix_constrained_logits_proc._num_beams, num_beams) def test_serialize_generation_diversity_penalty_and_num_bean_groups(self): """Tests that GenerationConfig is serialized and HammingDiversityLogitsProcessor is initialized with diversity_penalty_and_num_bean_groups""" num_beams = 2 num_beam_groups = 2 diversity_penalty = 1.0 generation_config = GenerationConfig( num_beams=num_beams, diversity_penalty=diversity_penalty, num_beam_groups=num_beam_groups ) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.num_beams, num_beams) self.assertEqual(new_config.diversity_penalty, diversity_penalty) self.assertEqual(new_config.num_beam_groups, num_beam_groups) diversity_logits_processor = HammingDiversityLogitsProcessor( diversity_penalty=new_config.diversity_penalty, num_beams=new_config.num_beams, num_beam_groups=new_config.num_beam_groups, ) self.assertEqual(diversity_logits_processor._num_beams, num_beams) self.assertEqual(diversity_logits_processor._diversity_penalty, diversity_penalty) self.assertEqual(diversity_logits_processor._num_sub_beams, num_beams // num_beam_groups) def test_serialize_generation_bos_token_id(self): """Tests that GenerationConfig is serialized and ForcedBOSTokenLogitsProcessor is initialized with bos_token_id""" bos_token_id = 0 generation_config = GenerationConfig(bos_token_id=bos_token_id) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.bos_token_id, bos_token_id) logits_processor = ForcedBOSTokenLogitsProcessor(bos_token_id=new_config.bos_token_id) self.assertEqual(logits_processor.bos_token_id, bos_token_id) def test_serialize_generation_eos_token_id(self): """Tests that GenerationConfig is serialized and ForcedEOSTokenLogitsProcessor is initialized with eos_token_id""" eos_token_id = 0 max_length = 5 generation_config = GenerationConfig(eos_token_id=eos_token_id) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.eos_token_id, eos_token_id) logits_processor = ForcedEOSTokenLogitsProcessor( max_length=max_length, eos_token_id=new_config.eos_token_id, device=torch_device ) self.assertEqual(logits_processor.eos_token_id, eos_token_id) def test_serialize_generation_exponential_decay_length_penalty(self): """Tests that GenerationConfig is serialized and ExponentialDecayLengthPenalty is initialized with regulation_start and regulation_factor""" eos_token_id = 0 penalty_start = 5 penalty_factor = 1.1 input_ids_seq_length = 10 exponential_decay_length_penalty = (penalty_start, penalty_factor) generation_config = GenerationConfig(exponential_decay_length_penalty=exponential_decay_length_penalty) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.exponential_decay_length_penalty, [penalty_start, penalty_factor]) exponential_decay_processor = ExponentialDecayLengthPenalty( exponential_decay_length_penalty=new_config.exponential_decay_length_penalty, eos_token_id=eos_token_id, input_ids_seq_length=input_ids_seq_length, ) self.assertEqual( exponential_decay_processor.regulation_start, exponential_decay_length_penalty[0] + input_ids_seq_length ) self.assertEqual(exponential_decay_processor.regulation_factor, exponential_decay_length_penalty[1]) def test_serialize_generation_begin_suppress_tokens(self): """Tests that GenerationConfig is serialized and SuppressTokensAtBeginLogitsProcessor is initialized with begin_suppress_token and begin_index""" begin_suppress_tokens = [220, 50256] begin_index = 0 generation_config = GenerationConfig(begin_suppress_tokens=begin_suppress_tokens) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertSequenceEqual(new_config.begin_suppress_tokens, begin_suppress_tokens) suppress_processor = SuppressTokensAtBeginLogitsProcessor( begin_suppress_tokens=new_config.begin_suppress_tokens, begin_index=begin_index ) self.assertSequenceEqual(suppress_processor.begin_suppress_tokens, begin_suppress_tokens) self.assertEqual(suppress_processor.begin_index, begin_index) def test_serialize_generation_suppress_tokens(self): """Tests that GenerationConfig is serialized and SuppressTokensLogitsProcessor is initialized with suppress_token""" suppress_tokens = [220, 50256] generation_config = GenerationConfig(suppress_tokens=suppress_tokens) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertSequenceEqual(new_config.suppress_tokens, suppress_tokens) suppress_processor = SuppressTokensLogitsProcessor(suppress_tokens=new_config.suppress_tokens) self.assertSequenceEqual(suppress_processor.suppress_tokens, suppress_tokens) def test_serialize_generation_guidance_scale(self): """Tests that GenerationConfig is serialized and ClassifierFreeGuidanceLogitsProcessor is initialized with guidance_scale""" guidance_scale = 2.0 generation_config = GenerationConfig(guidance_scale=guidance_scale) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.guidance_scale, guidance_scale) classifier_processor = ClassifierFreeGuidanceLogitsProcessor(guidance_scale=new_config.guidance_scale) self.assertEqual(classifier_processor.guidance_scale, guidance_scale) def test_serialize_generation_guidance_scale_unbatched(self): """Tests that GenerationConfig is serialized and UnbatchedClassifierFreeGuidanceLogitsProcessor is initialized with guidance_scale""" guidance_scale = 2.0 input_ids = torch.LongTensor([[0]]) generation_config = GenerationConfig(guidance_scale=guidance_scale) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.guidance_scale, guidance_scale) cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(new_config.guidance_scale, {}, input_ids) self.assertEqual(cfg.guidance_scale, guidance_scale) def test_serialize_generation_watermarking_config(self): """Tests that GenerationConfig is serialized and WatermarkLogitsProcessor is initialized with WatermarkingConfig parameters""" vocab_size = 20 bias = 2.0 greenlist_ratio = 0.5 hashing_key = 10 seeding_scheme = "lefthash" context_width = 10 watermarking_config = WatermarkingConfig( bias=bias, greenlist_ratio=greenlist_ratio, hashing_key=hashing_key, seeding_scheme=seeding_scheme, context_width=context_width, ) generation_config = GenerationConfig(watermarking_config=watermarking_config) with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(tmp_dir) new_config = GenerationConfig.from_pretrained(tmp_dir) self.assertEqual(new_config.watermarking_config.bias, bias) self.assertEqual(new_config.watermarking_config.greenlist_ratio, greenlist_ratio) self.assertEqual(new_config.watermarking_config.hashing_key, hashing_key) self.assertEqual(new_config.watermarking_config.seeding_scheme, seeding_scheme) self.assertEqual(new_config.watermarking_config.context_width, context_width) watermark = WatermarkLogitsProcessor( vocab_size=vocab_size, device=torch_device, greenlist_ratio=new_config.watermarking_config.greenlist_ratio, bias=new_config.watermarking_config.bias, hashing_key=new_config.watermarking_config.hashing_key, seeding_scheme=new_config.watermarking_config.seeding_scheme, context_width=new_config.watermarking_config.context_width, ) self.assertEqual(watermark.bias, bias) self.assertEqual(watermark.greenlist_size, int(vocab_size * greenlist_ratio)) self.assertEqual(watermark.hash_key, hashing_key) self.assertEqual(watermark.seeding_scheme, seeding_scheme) self.assertEqual(watermark.context_width, context_width) @is_staging_test class ConfigPushToHubTester(unittest.TestCase): @classmethod def setUpClass(cls): cls._token = TOKEN HfFolder.save_token(TOKEN) def test_push_to_hub(self): with TemporaryHubRepo(token=self._token) as tmp_repo: config = GenerationConfig( do_sample=True, temperature=0.7, length_penalty=1.0, ) config.push_to_hub(tmp_repo.repo_id, token=self._token) new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(v, getattr(new_config, k)) def test_push_to_hub_via_save_pretrained(self): with TemporaryHubRepo(token=self._token) as tmp_repo: config = GenerationConfig( do_sample=True, temperature=0.7, length_penalty=1.0, ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token) new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(v, getattr(new_config, k)) def test_push_to_hub_in_organization(self): with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo: config = GenerationConfig( do_sample=True, temperature=0.7, length_penalty=1.0, ) config.push_to_hub(tmp_repo.repo_id, token=self._token) new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(v, getattr(new_config, k)) def test_push_to_hub_in_organization_via_save_pretrained(self): with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo: config = GenerationConfig( do_sample=True, temperature=0.7, length_penalty=1.0, ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token) new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(v, getattr(new_config, k)) def test_push_to_hub_on_pr_revision(self): with TemporaryHubRepo(token=self._token) as tmp_repo: # create a PR pr = create_pull_request(repo_id=tmp_repo.repo_id, title="Test PR", token=self._token) revision = f"refs/pr/{pr.num}" # push to PR ref config = GenerationConfig( do_sample=True, temperature=0.7, length_penalty=1.0, ) config.push_to_hub(tmp_repo.repo_id, token=self._token, revision=revision) # load from PR ref new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id, revision=revision) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(v, getattr(new_config, k))