# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Glm4 model.""" import unittest import pytest from transformers import AutoModelForCausalLM, AutoTokenizer, Glm4Config, is_torch_available from transformers.testing_utils import ( Expectations, cleanup, require_flash_attn, require_torch, require_torch_large_gpu, require_torch_sdpa, slow, torch_device, ) from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester if is_torch_available(): import torch from transformers import ( Glm4ForCausalLM, Glm4ForSequenceClassification, Glm4ForTokenClassification, Glm4Model, ) class Glm4ModelTester(CausalLMModelTester): if is_torch_available(): config_class = Glm4Config base_model_class = Glm4Model causal_lm_class = Glm4ForCausalLM sequence_classification_class = Glm4ForSequenceClassification token_classification_class = Glm4ForTokenClassification @require_torch class Glm4ModelTest(CausalLMModelTest, unittest.TestCase): model_tester_class = Glm4ModelTester all_model_classes = ( (Glm4Model, Glm4ForCausalLM, Glm4ForSequenceClassification, Glm4ForTokenClassification) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": Glm4Model, "text-classification": Glm4ForSequenceClassification, "token-classification": Glm4ForTokenClassification, "text-generation": Glm4ForCausalLM, "zero-shot": Glm4ForSequenceClassification, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False _is_stateful = True model_split_percents = [0.5, 0.6] @slow @require_torch_large_gpu class Glm4IntegrationTest(unittest.TestCase): input_text = ["Hello I am doing", "Hi today"] model_id = "THUDM/GLM-4-9B-0414" def tearDown(self): cleanup(torch_device, gc_collect=True) def test_model_9b_fp16(self): EXPECTED_TEXTS = Expectations( { ("cuda", 7): [], ("cuda", 8): [ "Hello I am doing a project on the history of the internet and I need to know what the first website was and what", "Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes", ], } ) EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation() model = AutoModelForCausalLM.from_pretrained( self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16 ).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(self.model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXT) def test_model_9b_bf16(self): EXPECTED_TEXTS = Expectations( { ("cuda", 7): [], ("cuda", 8): [ "Hello I am doing a project on the history of the internet and I need to know what the first website was and what", "Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes", ], } ) EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation() model = AutoModelForCausalLM.from_pretrained( self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 ).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(self.model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXT) def test_model_9b_eager(self): EXPECTED_TEXTS = Expectations( { ("cuda", 7): [], ("cuda", 8): [ "Hello I am doing a project on the history of the internet and I need to know what the first website was and what", "Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes", ], } ) EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation() model = AutoModelForCausalLM.from_pretrained( self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager", ) model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained(self.model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXT) @require_torch_sdpa def test_model_9b_sdpa(self): EXPECTED_TEXTS = Expectations( { ("cuda", 7): [], ("cuda", 8): [ "Hello I am doing a project on the history of the internet and I need to know what the first website was and what", "Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes", ], } ) EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation() model = AutoModelForCausalLM.from_pretrained( self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="sdpa", ) model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained(self.model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXT) @require_flash_attn @pytest.mark.flash_attn_test def test_model_9b_flash_attn(self): EXPECTED_TEXTS = Expectations( { ("cuda", 7): [], ("cuda", 8): [ "Hello I am doing a project on the history of the internet and I need to know what the first website was and what", "Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes", ], } ) EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation() model = AutoModelForCausalLM.from_pretrained( self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained(self.model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXT)