# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin from ...test_image_processing_common import prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViltFeatureExtractor class ViltFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, size_divisor=2, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"shortest_edge": 30} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.size_divisor = size_divisor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_feat_extract_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to ViltFeatureExtractor, assuming do_resize is set to True with a scalar size and size_divisor. """ if not batched: size = self.size["shortest_edge"] image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] scale = size / min(w, h) if h < w: newh, neww = size, scale * w else: newh, neww = scale * h, size max_size = int((1333 / 800) * size) if max(newh, neww) > max_size: scale = max_size / max(newh, neww) newh = newh * scale neww = neww * scale newh, neww = int(newh + 0.5), int(neww + 0.5) expected_height, expected_width = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width @require_torch @require_vision class ViltFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase): feature_extraction_class = ViltFeatureExtractor if is_vision_available() else None def setUp(self): self.feature_extract_tester = ViltFeatureExtractionTester(self) @property def feat_extract_dict(self): return self.feature_extract_tester.prepare_feat_extract_dict() def test_feat_extract_properties(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(feature_extractor, "image_mean")) self.assertTrue(hasattr(feature_extractor, "image_std")) self.assertTrue(hasattr(feature_extractor, "do_normalize")) self.assertTrue(hasattr(feature_extractor, "do_resize")) self.assertTrue(hasattr(feature_extractor, "size")) self.assertTrue(hasattr(feature_extractor, "size_divisor")) def test_feat_extract_from_dict_with_kwargs(self): feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict) self.assertEqual(feature_extractor.size, {"shortest_edge": 30}) feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict, size=42) self.assertEqual(feature_extractor.size, {"shortest_edge": 42}) def test_batch_feature(self): pass def test_call_pil(self): # Initialize feature_extractor feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) # create random PIL images image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs) self.assertEqual( encoded_images.shape, (1, self.feature_extract_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True) self.assertEqual( encoded_images.shape, ( self.feature_extract_tester.batch_size, self.feature_extract_tester.num_channels, expected_height, expected_width, ), ) def test_call_numpy(self): # Initialize feature_extractor feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) # create random numpy tensors image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs) self.assertEqual( encoded_images.shape, (1, self.feature_extract_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True) self.assertEqual( encoded_images.shape, ( self.feature_extract_tester.batch_size, self.feature_extract_tester.num_channels, expected_height, expected_width, ), ) def test_call_pytorch(self): # Initialize feature_extractor feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) # create random PyTorch tensors image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs) self.assertEqual( encoded_images.shape, (1, self.feature_extract_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True) self.assertEqual( encoded_images.shape, ( self.feature_extract_tester.batch_size, self.feature_extract_tester.num_channels, expected_height, expected_width, ), ) def test_equivalence_pad_and_create_pixel_mask(self): # Initialize feature_extractors feature_extractor_1 = self.feature_extraction_class(**self.feat_extract_dict) feature_extractor_2 = self.feature_extraction_class(do_resize=False, do_normalize=False, do_rescale=False) # create random PyTorch tensors image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test whether the method "pad_and_return_pixel_mask" and calling the feature extractor return the same tensors encoded_images_with_method = feature_extractor_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt") encoded_images = feature_extractor_2(image_inputs, return_tensors="pt") self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4) ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4) )