# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 DistilBERT model """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import math import copy import sys from io import open import itertools import numpy as np import tensorflow as tf from .configuration_distilbert import DistilBertConfig from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, shape_list, get_initializer from .file_utils import add_start_docstrings logger = logging.getLogger(__name__) TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP = { 'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-tf_model.h5", 'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-tf_model.h5", 'distilbert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-multilingual-cased-tf_model.h5", } ### UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE ### def gelu(x): """ Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ cdf = 0.5 * (1.0 + tf.math.erf(x / tf.math.sqrt(2.0))) return x * cdf def gelu_new(x): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: x: float Tensor to perform activation. Returns: `x` with the GELU activation applied. """ cdf = 0.5 * (1.0 + tf.tanh( (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf class TFEmbeddings(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super(TFEmbeddings, self).__init__(**kwargs) self.vocab_size = config.vocab_size self.dim = config.dim self.initializer_range = config.initializer_range self.word_embeddings = TFSharedEmbeddings(config.vocab_size, config.dim, initializer_range=config.initializer_range, name='word_embeddings') # padding_idx=0) self.position_embeddings = tf.keras.layers.Embedding(config.max_position_embeddings, config.dim, embeddings_initializer=get_initializer(config.initializer_range), name='position_embeddings') if config.sinusoidal_pos_embds: raise NotImplementedError self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.dropout) def build(self, input_shape): """Build shared word embedding layer """ with tf.name_scope("word_embeddings"): # Create and initialize weights. The random normal initializer was chosen # arbitrarily, and works well. self.word_embeddings = self.add_weight( "weight", shape=[self.vocab_size, self.dim], initializer=get_initializer(self.initializer_range)) super(TFEmbeddings, self).build(input_shape) def call(self, inputs, inputs_embeds=None, mode="embedding", training=False): """Get token embeddings of inputs. Args: inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids) mode: string, a valid value is one of "embedding" and "linear". Returns: outputs: (1) If mode == "embedding", output embedding tensor, float32 with shape [batch_size, length, embedding_size]; (2) mode == "linear", output linear tensor, float32 with shape [batch_size, length, vocab_size]. Raises: ValueError: if mode is not valid. Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ if mode == "embedding": return self._embedding(inputs, inputs_embeds=inputs_embeds, training=training) elif mode == "linear": return self._linear(inputs) else: raise ValueError("mode {} is not valid.".format(mode)) def _embedding(self, inputs, inputs_embeds=None, training=False): """ Parameters ---------- input_ids: tf.Tensor(bs, max_seq_length) The token ids to embed. Outputs ------- embeddings: tf.Tensor(bs, max_seq_length, dim) The embedded tokens (plus position embeddings, no token_type embeddings) """ if not isinstance(inputs, (tuple, list)): input_ids = inputs position_ids = None else: input_ids, position_ids = inputs if input_ids is not None: seq_length = shape_list(input_ids)[1] else: seq_length = shape_list(inputs_embeds)[1] if position_ids is None: position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :] if inputs_embeds is None: inputs_embeds = tf.gather(self.word_embeddings, input_ids) position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim) embeddings = inputs_embeds + position_embeddings # (bs, max_seq_length, dim) embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim) embeddings = self.dropout(embeddings, training=training) # (bs, max_seq_length, dim) return embeddings def _linear(self, inputs): """Computes logits by running inputs through a linear layer. Args: inputs: A float32 tensor with shape [batch_size, length, hidden_size] Returns: float32 tensor with shape [batch_size, length, vocab_size]. """ batch_size = shape_list(inputs)[0] length = shape_list(inputs)[1] x = tf.reshape(inputs, [-1, self.dim]) logits = tf.matmul(x, self.word_embeddings, transpose_b=True) return tf.reshape(logits, [batch_size, length, self.vocab_size]) class TFMultiHeadSelfAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super(TFMultiHeadSelfAttention, self).__init__(**kwargs) self.n_heads = config.n_heads self.dim = config.dim self.dropout = tf.keras.layers.Dropout(config.attention_dropout) self.output_attentions = config.output_attentions assert self.dim % self.n_heads == 0 self.q_lin = tf.keras.layers.Dense(config.dim, kernel_initializer=get_initializer(config.initializer_range), name="q_lin") self.k_lin = tf.keras.layers.Dense(config.dim, kernel_initializer=get_initializer(config.initializer_range), name="k_lin") self.v_lin = tf.keras.layers.Dense(config.dim, kernel_initializer=get_initializer(config.initializer_range), name="v_lin") self.out_lin = tf.keras.layers.Dense(config.dim, kernel_initializer=get_initializer(config.initializer_range), name="out_lin") self.pruned_heads = set() def prune_heads(self, heads): raise NotImplementedError def call(self, inputs, training=False): """ Parameters ---------- query: tf.Tensor(bs, seq_length, dim) key: tf.Tensor(bs, seq_length, dim) value: tf.Tensor(bs, seq_length, dim) mask: tf.Tensor(bs, seq_length) Outputs ------- weights: tf.Tensor(bs, n_heads, seq_length, seq_length) Attention weights context: tf.Tensor(bs, seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True` """ query, key, value, mask, head_mask = inputs bs, q_length, dim = shape_list(query) k_length = shape_list(key)[1] # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim) # assert key.size() == value.size() dim_per_head = self.dim // self.n_heads mask_reshape = [bs, 1, 1, k_length] def shape(x): """ separate heads """ return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3)) def unshape(x): """ group heads """ return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head)) q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head) k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head) v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head) q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head) scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, q_length, k_length) mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen) # scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, q_length, k_length) scores = scores - 1e30 * (1.0 - mask) weights = tf.nn.softmax(scores, axis=-1) # (bs, n_heads, qlen, klen) weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen) # Mask heads if we want to if head_mask is not None: weights = weights * head_mask context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) context = unshape(context) # (bs, q_length, dim) context = self.out_lin(context) # (bs, q_length, dim) if self.output_attentions: return (context, weights) else: return (context,) class TFFFN(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super(TFFFN, self).__init__(**kwargs) self.dropout = tf.keras.layers.Dropout(config.dropout) self.lin1 = tf.keras.layers.Dense(config.hidden_dim, kernel_initializer=get_initializer(config.initializer_range), name="lin1") self.lin2 = tf.keras.layers.Dense(config.dim, kernel_initializer=get_initializer(config.initializer_range), name="lin2") assert config.activation in ['relu', 'gelu'], "activation ({}) must be in ['relu', 'gelu']".format(config.activation) self.activation = tf.keras.layers.Activation(gelu) if config.activation=='gelu' else tf.keras.activations.relu def call(self, input, training=False): x = self.lin1(input) x = self.activation(x) x = self.lin2(x) x = self.dropout(x, training=training) return x class TFTransformerBlock(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super(TFTransformerBlock, self).__init__(**kwargs) self.n_heads = config.n_heads self.dim = config.dim self.hidden_dim = config.hidden_dim self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation = config.activation self.output_attentions = config.output_attentions assert config.dim % config.n_heads == 0 self.attention = TFMultiHeadSelfAttention(config, name="attention") self.sa_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="sa_layer_norm") self.ffn = TFFFN(config, name="ffn") self.output_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="output_layer_norm") def call(self, inputs, training=False): # removed: src_enc=None, src_len=None """ Parameters ---------- x: tf.Tensor(bs, seq_length, dim) attn_mask: tf.Tensor(bs, seq_length) Outputs ------- sa_weights: tf.Tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output: tf.Tensor(bs, seq_length, dim) The output of the transformer block contextualization. """ x, attn_mask, head_mask = inputs # Self-Attention sa_output = self.attention([x, x, x, attn_mask, head_mask], training=training) if self.output_attentions: sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length) else: # To handle these `output_attention` or `output_hidden_states` cases returning tuples # assert type(sa_output) == tuple sa_output = sa_output[0] sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim) # Feed Forward Network ffn_output = self.ffn(sa_output, training=training) # (bs, seq_length, dim) ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim) output = (ffn_output,) if self.output_attentions: output = (sa_weights,) + output return output class TFTransformer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super(TFTransformer, self).__init__(**kwargs) self.n_layers = config.n_layers self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = [TFTransformerBlock(config, name='layer_._{}'.format(i)) for i in range(config.n_layers)] def call(self, inputs, training=False): """ Parameters ---------- x: tf.Tensor(bs, seq_length, dim) Input sequence embedded. attn_mask: tf.Tensor(bs, seq_length) Attention mask on the sequence. Outputs ------- hidden_state: tf.Tensor(bs, seq_length, dim) Sequence of hiddens states in the last (top) layer all_hidden_states: Tuple[tf.Tensor(bs, seq_length, dim)] Tuple of length n_layers with the hidden states from each layer. Optional: only if output_hidden_states=True all_attentions: Tuple[tf.Tensor(bs, n_heads, seq_length, seq_length)] Tuple of length n_layers with the attention weights from each layer Optional: only if output_attentions=True """ x, attn_mask, head_mask = inputs all_hidden_states = () all_attentions = () hidden_state = x for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) layer_outputs = layer_module([hidden_state, attn_mask, head_mask[i]], training=training) hidden_state = layer_outputs[-1] if self.output_attentions: assert len(layer_outputs) == 2 attentions = layer_outputs[0] all_attentions = all_attentions + (attentions,) else: assert len(layer_outputs) == 1 # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) outputs = (hidden_state,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) class TFDistilBertMainLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super(TFDistilBertMainLayer, self).__init__(**kwargs) self.num_hidden_layers = config.num_hidden_layers self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings self.transformer = TFTransformer(config, name="transformer") # Encoder def get_input_embeddings(self): return self.embeddings def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError def _prune_heads(self, heads_to_prune): raise NotImplementedError def call(self, inputs, attention_mask=None, head_mask=None, inputs_embeds=None, training=False): if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask head_mask = inputs[2] if len(inputs) > 2 else head_mask inputs_embeds = inputs[3] if len(inputs) > 3 else inputs_embeds assert len(inputs) <= 4, "Too many inputs." elif isinstance(inputs, dict): input_ids = inputs.get('input_ids') attention_mask = inputs.get('attention_mask', attention_mask) head_mask = inputs.get('head_mask', head_mask) inputs_embeds = inputs.get('inputs_embeds', inputs_embeds) assert len(inputs) <= 4, "Too many inputs." else: input_ids = inputs if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.ones(input_shape) # (bs, seq_length) attention_mask = tf.cast(attention_mask, dtype=tf.float32) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers embedding_output = self.embeddings(input_ids, inputs_embeds=inputs_embeds) # (bs, seq_length, dim) tfmr_output = self.transformer([embedding_output, attention_mask, head_mask], training=training) return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions) ### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ### class TFDistilBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DistilBertConfig pretrained_model_archive_map = TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "distilbert" DISTILBERT_START_DOCSTRING = r""" DistilBERT is a small, fast, cheap and light Transformer model trained by distilling Bert base. It has 40% less parameters than `bert-base-uncased`, runs 60% faster while preserving over 95% of Bert's performances as measured on the GLUE language understanding benchmark. Here are the differences between the interface of Bert and DistilBert: - DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`) - DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option. For more information on DistilBERT, please refer to our `detailed blog post`_ This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. _`detailed blog post`: https://medium.com/huggingface/distilbert-8cf3380435b5 .. _`tf.keras.Model`: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model Note on the model inputs: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with input_ids only and nothing else: `model(inputs_ids) - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associaed to the input names given in the docstring: `model({'input_ids': input_ids, 'token_type_ids': token_type_ids})` Parameters: config (:class:`~transformers.DistilBertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ DISTILBERT_INPUTS_DOCSTRING = r""" Inputs: **input_ids** ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``: Indices of input sequence tokens in the vocabulary. The input sequences should start with `[CLS]` and end with `[SEP]` tokens. For now, ONLY BertTokenizer(`bert-base-uncased`) is supported and you should use this tokenizer when using DistilBERT. **attention_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. **inputs_embeds**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, embedding_dim)``: Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. """ @add_start_docstrings("The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top.", DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class TFDistilBertModel(TFDistilBertPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import DistilBertTokenizer, TFDistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = TFDistilBertModel.from_pretrained('distilbert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config, *inputs, **kwargs): super(TFDistilBertModel, self).__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings def call(self, inputs, **kwargs): outputs = self.distilbert(inputs, **kwargs) return outputs class TFDistilBertLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super(TFDistilBertLMHead, self).__init__(**kwargs) self.vocab_size = config.vocab_size # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer='zeros', trainable=True, name='bias') super(TFDistilBertLMHead, self).build(input_shape) def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @add_start_docstrings("""DistilBert Model with a `masked language modeling` head on top. """, DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **prediction_scores**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import DistilBertTokenizer, TFDistilBertForMaskedLM tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = TFDistilBertForMaskedLM.from_pretrained('distilbert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 outputs = model(input_ids) prediction_scores = outputs[0] """ def __init__(self, config, *inputs, **kwargs): super(TFDistilBertForMaskedLM, self).__init__(config, *inputs, **kwargs) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.vocab_size = config.vocab_size self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.vocab_transform = tf.keras.layers.Dense(config.dim, kernel_initializer=get_initializer(config.initializer_range), name="vocab_transform") self.act = tf.keras.layers.Activation(gelu) self.vocab_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm") self.vocab_projector = TFDistilBertLMHead(config, self.distilbert.embeddings, name="vocab_projector") def get_output_embeddings(self): return self.vocab_projector.input_embeddings def call(self, inputs, **kwargs): distilbert_output = self.distilbert(inputs, **kwargs) hidden_states = distilbert_output[0] # (bs, seq_length, dim) prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) prediction_logits = self.act(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_projector(prediction_logits) outputs = (prediction_logits,) + distilbert_output[1:] return outputs # logits, (hidden_states), (attentions) @add_start_docstrings("""DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **logits**: ``tf.Tensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFDistilBertForSequenceClassification tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 outputs = model(input_ids) logits = outputs[0] """ def __init__(self, config, *inputs, **kwargs): super(TFDistilBertForSequenceClassification, self).__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.pre_classifier = tf.keras.layers.Dense(config.dim, kernel_initializer=get_initializer(config.initializer_range), activation='relu', name="pre_classifier") self.classifier = tf.keras.layers.Dense(config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier") self.dropout = tf.keras.layers.Dropout(config.seq_classif_dropout) def call(self, inputs, **kwargs): distilbert_output = self.distilbert(inputs, **kwargs) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = self.dropout(pooled_output, training=kwargs.get('training', False)) # (bs, dim) logits = self.classifier(pooled_output) # (bs, dim) outputs = (logits,) + distilbert_output[1:] return outputs # logits, (hidden_states), (attentions) @add_start_docstrings("""DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.num_labels)`` Classification scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import DistilBertTokenizer, TFDistilBertForTokenClassification tokenizer = DistilBertTokenizer.from_pretrained('bert-base-uncased') model = TFDistilBertForTokenClassification.from_pretrained('bert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 outputs = model(input_ids) scores = outputs[0] """ def __init__(self, config, *inputs, **kwargs): super(TFDistilBertForTokenClassification, self).__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.distilbert = TFDistilBertMainLayer(config, name='distilbert') self.dropout = tf.keras.layers.Dropout(config.dropout) self.classifier = tf.keras.layers.Dense(config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name='classifier') def call(self, inputs, **kwargs): outputs = self.distilbert(inputs, **kwargs) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=kwargs.get('training', False)) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here return outputs # scores, (hidden_states), (attentions) @add_start_docstrings("""DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **start_scores**: ``tf.Tensor`` of shape ``(batch_size, sequence_length,)`` Span-start scores (before SoftMax). **end_scores**: ``tf.Tensor`` of shape ``(batch_size, sequence_length,)`` Span-end scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFDistilBertForQuestionAnswering tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = TFDistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 outputs = model(input_ids) start_scores, end_scores = outputs[:2] """ def __init__(self, config, *inputs, **kwargs): super(TFDistilBertForQuestionAnswering, self).__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.qa_outputs = tf.keras.layers.Dense(config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name='qa_outputs') assert config.num_labels == 2 self.dropout = tf.keras.layers.Dropout(config.qa_dropout) def call(self, inputs, **kwargs): distilbert_output = self.distilbert(inputs, **kwargs) hidden_states = distilbert_output[0] # (bs, max_query_len, dim) hidden_states = self.dropout(hidden_states, training=kwargs.get('training', False)) # (bs, max_query_len, dim) logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) outputs = (start_logits, end_logits,) + distilbert_output[1:] return outputs # start_logits, end_logits, (hidden_states), (attentions)