# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import os import sys from io import open import tempfile import shutil import unittest if sys.version_info[0] == 2: import cPickle as pickle class TemporaryDirectory(object): """Context manager for tempfile.mkdtemp() so it's usable with "with" statement.""" def __enter__(self): self.name = tempfile.mkdtemp() return self.name def __exit__(self, exc_type, exc_value, traceback): shutil.rmtree(self.name) else: import pickle TemporaryDirectory = tempfile.TemporaryDirectory unicode = str class CommonTestCases: class CommonTokenizerTester(unittest.TestCase): tokenizer_class = None def setUp(self): self.tmpdirname = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmpdirname) def get_tokenizer(self, **kwargs): raise NotImplementedError def get_input_output_texts(self): raise NotImplementedError def test_tokenizers_common_properties(self): tokenizer = self.get_tokenizer() attributes_list = ["bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token"] for attr in attributes_list: self.assertTrue(hasattr(tokenizer, attr)) self.assertTrue(hasattr(tokenizer, attr + "_id")) self.assertTrue(hasattr(tokenizer, "additional_special_tokens")) self.assertTrue(hasattr(tokenizer, 'additional_special_tokens_ids')) attributes_list = ["max_len", "init_inputs", "init_kwargs", "added_tokens_encoder", "added_tokens_decoder"] for attr in attributes_list: self.assertTrue(hasattr(tokenizer, attr)) def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizer = self.get_tokenizer() self.assertNotEqual(tokenizer.max_len, 42) # Now let's start the test tokenizer = self.get_tokenizer(max_len=42) before_tokens = tokenizer.encode(u"He is very happy, UNwant\u00E9d,running") with TemporaryDirectory() as tmpdirname: tokenizer.save_pretrained(tmpdirname) tokenizer = self.tokenizer_class.from_pretrained(tmpdirname) after_tokens = tokenizer.encode(u"He is very happy, UNwant\u00E9d,running") self.assertListEqual(before_tokens, after_tokens) self.assertEqual(tokenizer.max_len, 42) tokenizer = self.tokenizer_class.from_pretrained(tmpdirname, max_len=43) self.assertEqual(tokenizer.max_len, 43) def test_pickle_tokenizer(self): tokenizer = self.get_tokenizer() self.assertIsNotNone(tokenizer) text = u"Munich and Berlin are nice cities" subwords = tokenizer.tokenize(text) with TemporaryDirectory() as tmpdirname: filename = os.path.join(tmpdirname, u"tokenizer.bin") pickle.dump(tokenizer, open(filename, "wb")) tokenizer_new = pickle.load(open(filename, "rb")) subwords_loaded = tokenizer_new.tokenize(text) self.assertListEqual(subwords, subwords_loaded) def test_add_tokens_tokenizer(self): tokenizer = self.get_tokenizer() vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) self.assertEqual(vocab_size, all_size) new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l") out_string = tokenizer.decode(tokens) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) new_toks_2 = {'eos_token': ">>>>|||<||<<|<<", 'pad_token': "<<<<<|||>|>>>>|>"} added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) tokens = tokenizer.encode(">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l") out_string = tokenizer.decode(tokens) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokens[-3]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-2], tokenizer.pad_token_id) def test_required_methods_tokenizer(self): tokenizer = self.get_tokenizer() input_text, output_text = self.get_input_output_texts() tokens = tokenizer.tokenize(input_text) ids = tokenizer.convert_tokens_to_ids(tokens) ids_2 = tokenizer.encode(input_text) self.assertListEqual(ids, ids_2) tokens_2 = tokenizer.convert_ids_to_tokens(ids) text_2 = tokenizer.decode(ids) self.assertEqual(text_2, output_text) self.assertNotEqual(len(tokens_2), 0) self.assertIsInstance(text_2, (str, unicode)) def test_pretrained_model_lists(self): weights_list = list(self.tokenizer_class.max_model_input_sizes.keys()) weights_lists_2 = [] for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items(): weights_lists_2.append(list(map_list.keys())) for weights_list_2 in weights_lists_2: self.assertListEqual(weights_list, weights_list_2) def test_mask_output(self): if sys.version_info <= (3, 0): return tokenizer = self.get_tokenizer() if tokenizer.add_special_tokens_sentences_pair.__qualname__.split('.')[0] != "PreTrainedTokenizer": seq_0 = "Test this method." seq_1 = "With these inputs." information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True, output_mask=True) sequences, mask = information["sequence"], information["mask"] assert len(sequences) == len(mask) def test_number_of_added_tokens(self): tokenizer = self.get_tokenizer() seq_0 = "Test this method." seq_1 = "With these inputs." sequences = tokenizer.encode(seq_0, seq_1) attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True) # Method is implemented (e.g. not GPT-2) if len(attached_sequences) != 2: assert tokenizer.num_added_tokens(pair=True) == len(attached_sequences) - len(sequences) def test_maximum_encoding_length_single_input(self): tokenizer = self.get_tokenizer() seq_0 = "This is a sentence to be encoded." sequence = tokenizer.encode(seq_0) num_added_tokens = tokenizer.num_added_tokens() total_length = len(sequence) + num_added_tokens information = tokenizer.encode_plus(seq_0, max_length=total_length - 2, add_special_tokens=True) truncated_sequence = information["sequence"] overflowing_tokens = information["overflowing_tokens"] assert len(overflowing_tokens) == 2 assert len(truncated_sequence) == total_length - 2 assert truncated_sequence == tokenizer.add_special_tokens_single_sentence(sequence[:-2]) def test_maximum_encoding_length_pair_input(self): tokenizer = self.get_tokenizer() seq_0 = "This is a sentence to be encoded." seq_1 = "This is another sentence to be encoded." sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=True) truncated_second_sequence = tokenizer.add_special_tokens_sentences_pair( tokenizer.encode(seq_0), tokenizer.encode(seq_1)[:-2] ) information = tokenizer.encode_plus(seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=True) truncated_sequence = information["sequence"] overflowing_tokens = information["overflowing_tokens"] assert len(truncated_sequence) == len(sequence) - 2 assert truncated_sequence == truncated_second_sequence