# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import optimization_pytorch as optimization import torch import unittest class OptimizationTest(unittest.TestCase): def assertListAlmostEqual(self, list1, list2, tol): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) def test_adam(self): w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) x = torch.tensor([0.4, 0.2, -0.5]) criterion = torch.nn.MSELoss(reduction='elementwise_mean') optimizer = optimization.BERTAdam(params={w}, lr=0.2, schedule='warmup_linear', warmup=0.1, t_total=100) for _ in range(100): # TODO Solve: reduction='elementwise_mean'=True not taken into account so division by x.size(0) is necessary loss = criterion(x, w) / x.size(0) loss.backward() optimizer.step() self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2) if __name__ == "__main__": unittest.main()