# Semantic segmentation [[open-in-colab]] セマンティック セグメンテーションでは、画像の個々のピクセルにラベルまたはクラスを割り当てます。セグメンテーションにはいくつかのタイプがありますが、セマンティック セグメンテーションの場合、同じオブジェクトの一意のインスタンス間の区別は行われません。両方のオブジェクトに同じラベルが付けられます (たとえば、`car-1`と`car-2`の代わりに`car`)。セマンティック セグメンテーションの一般的な現実世界のアプリケーションには、歩行者や重要な交通情報を識別するための自動運転車のトレーニング、医療画像内の細胞と異常の識別、衛星画像からの環境変化の監視などが含まれます。 このガイドでは、次の方法を説明します。 1. [SceneParse150](https://huggingface.co/datasets/scene_parse_150) データセットの [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) を微調整します。 2. 微調整したモデルを推論に使用します。 このチュートリアルで説明するタスクは、次のモデル アーキテクチャでサポートされています。 [BEiT](../model_doc/beit), [Data2VecVision](../model_doc/data2vec-vision), [DPT](../model_doc/dpt), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [MobileViTV2](../model_doc/mobilevitv2), [SegFormer](../model_doc/segformer), [UPerNet](../model_doc/upernet) 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install -q datasets transformers evaluate ``` モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。 ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load SceneParse150 dataset まず、SceneParse150 データセットの小さいサブセットを 🤗 データセット ライブラリから読み込みます。これにより、完全なデータセットのトレーニングにさらに時間を費やす前に、実験してすべてが機能することを確認する機会が得られます。 ```py >>> from datasets import load_dataset >>> ds = load_dataset("scene_parse_150", split="train[:50]") ``` [`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットの `train` 分割をトレイン セットとテスト セットに分割します。 ```py >>> ds = ds.train_test_split(test_size=0.2) >>> train_ds = ds["train"] >>> test_ds = ds["test"] ``` 次に、例を見てみましょう。 ```py >>> train_ds[0] {'image': , 'annotation': , 'scene_category': 368} ``` - `image`: シーンの PIL イメージ。 - `annotation`: セグメンテーション マップの PIL イメージ。モデルのターゲットでもあります。 - `scene_category`: "kitchen"や"office"などの画像シーンを説明するカテゴリ ID。このガイドでは、`image`と`annotation`のみが必要になります。どちらも PIL イメージです。 また、ラベル ID をラベル クラスにマップする辞書を作成することもできます。これは、後でモデルを設定するときに役立ちます。ハブからマッピングをダウンロードし、`id2label` および `label2id` ディクショナリを作成します。 ```py >>> import json >>> from huggingface_hub import cached_download, hf_hub_url >>> repo_id = "huggingface/label-files" >>> filename = "ade20k-id2label.json" >>> id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) >>> id2label = {int(k): v for k, v in id2label.items()} >>> label2id = {v: k for k, v in id2label.items()} >>> num_labels = len(id2label) ``` ## Preprocess 次のステップでは、SegFormer 画像プロセッサをロードして、モデルの画像と注釈を準備します。このデータセットのような一部のデータセットは、バックグラウンド クラスとしてゼロインデックスを使用します。ただし、実際には背景クラスは 150 個のクラスに含まれていないため、`reduce_labels=True`を設定してすべてのラベルから 1 つを引く必要があります。ゼロインデックスは `255` に置き換えられるため、SegFormer の損失関数によって無視されます。 ```py >>> from transformers import AutoImageProcessor >>> checkpoint = "nvidia/mit-b0" >>> image_processor = AutoImageProcessor.from_pretrained(checkpoint, reduce_labels=True) ``` モデルを過学習に対してより堅牢にするために、画像データセットにいくつかのデータ拡張を適用するのが一般的です。このガイドでは、[torchvision](https://pytorch.org/vision/stable/index.html) の [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) 関数を使用します。 ) を使用して画像の色のプロパティをランダムに変更しますが、任意の画像ライブラリを使用することもできます。 ```py >>> from torchvision.transforms import ColorJitter >>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) ``` 次に、モデルの画像と注釈を準備するための 2 つの前処理関数を作成します。これらの関数は、画像を`pixel_values`に変換し、注釈を`labels`に変換します。トレーニング セットの場合、画像を画像プロセッサに提供する前に `jitter` が適用されます。テスト セットの場合、テスト中にデータ拡張が適用されないため、画像プロセッサは`images`を切り取って正規化し、`ラベル`のみを切り取ります。 ```py >>> def train_transforms(example_batch): ... images = [jitter(x) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs >>> def val_transforms(example_batch): ... images = [x for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs ``` データセット全体に`jitter`を適用するには、🤗 Datasets [`~datasets.Dataset.set_transform`] 関数を使用します。変換はオンザフライで適用されるため、高速で消費するディスク容量が少なくなります。 ```py >>> train_ds.set_transform(train_transforms) >>> test_ds.set_transform(val_transforms) ``` モデルを過学習に対してより堅牢にするために、画像データセットにいくつかのデータ拡張を適用するのが一般的です。 このガイドでは、[`tf.image`](https://www.tensorflow.org/api_docs/python/tf/image) を使用して画像の色のプロパティをランダムに変更しますが、任意のプロパティを使用することもできます。画像 好きな図書館。 2 つの別々の変換関数を定義します。 - 画像拡張を含むトレーニング データ変換 - 🤗 Transformers のコンピューター ビジョン モデルはチャネル優先のレイアウトを想定しているため、画像を転置するだけの検証データ変換 ```py >>> import tensorflow as tf >>> def aug_transforms(image): ... image = tf.keras.utils.img_to_array(image) ... image = tf.image.random_brightness(image, 0.25) ... image = tf.image.random_contrast(image, 0.5, 2.0) ... image = tf.image.random_saturation(image, 0.75, 1.25) ... image = tf.image.random_hue(image, 0.1) ... image = tf.transpose(image, (2, 0, 1)) ... return image >>> def transforms(image): ... image = tf.keras.utils.img_to_array(image) ... image = tf.transpose(image, (2, 0, 1)) ... return image ``` 次に、モデルの画像と注釈のバッチを準備する 2 つの前処理関数を作成します。これらの機能が適用されます 画像変換を行い、以前にロードされた `image_processor` を使用して画像を `pixel_values` に変換し、 `labels`への注釈。 `ImageProcessor` は、画像のサイズ変更と正規化も処理します。 ```py >>> def train_transforms(example_batch): ... images = [aug_transforms(x.convert("RGB")) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs >>> def val_transforms(example_batch): ... images = [transforms(x.convert("RGB")) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs ``` データセット全体に前処理変換を適用するには、🤗 Datasets [`~datasets.Dataset.set_transform`] 関数を使用します。 変換はオンザフライで適用されるため、高速で消費するディスク容量が少なくなります。 ```py >>> train_ds.set_transform(train_transforms) >>> test_ds.set_transform(val_transforms) ``` ## Evaluate トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) ライブラリを使用して、評価メソッドをすばやくロードできます。このタスクでは、[Mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) メトリックをロードします (🤗 Evaluate [クイック ツアー](https://huggingface.co/docs/evaluate/a_quick_tour) を参照して、メトリクスをロードして計算する方法の詳細を確認してください)。 ```py >>> import evaluate >>> metric = evaluate.load("mean_iou") ``` 次に、メトリクスを [`~evaluate.EvaluationModule.compute`] する関数を作成します。予測を次のように変換する必要があります 最初にロジットを作成し、次に [`~evaluate.EvaluationModule.compute`] を呼び出す前にラベルのサイズに一致するように再形成します。 ```py >>> import numpy as np >>> import torch >>> from torch import nn >>> def compute_metrics(eval_pred): ... with torch.no_grad(): ... logits, labels = eval_pred ... logits_tensor = torch.from_numpy(logits) ... logits_tensor = nn.functional.interpolate( ... logits_tensor, ... size=labels.shape[-2:], ... mode="bilinear", ... align_corners=False, ... ).argmax(dim=1) ... pred_labels = logits_tensor.detach().cpu().numpy() ... metrics = metric.compute( ... predictions=pred_labels, ... references=labels, ... num_labels=num_labels, ... ignore_index=255, ... reduce_labels=False, ... ) ... for key, value in metrics.items(): ... if type(value) is np.ndarray: ... metrics[key] = value.tolist() ... return metrics ``` ```py >>> def compute_metrics(eval_pred): ... logits, labels = eval_pred ... logits = tf.transpose(logits, perm=[0, 2, 3, 1]) ... logits_resized = tf.image.resize( ... logits, ... size=tf.shape(labels)[1:], ... method="bilinear", ... ) ... pred_labels = tf.argmax(logits_resized, axis=-1) ... metrics = metric.compute( ... predictions=pred_labels, ... references=labels, ... num_labels=num_labels, ... ignore_index=-1, ... reduce_labels=image_processor.do_reduce_labels, ... ) ... per_category_accuracy = metrics.pop("per_category_accuracy").tolist() ... per_category_iou = metrics.pop("per_category_iou").tolist() ... metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) ... metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)}) ... return {"val_" + k: v for k, v in metrics.items()} ``` これで`compute_metrics`関数の準備が整いました。トレーニングをセットアップするときにこの関数に戻ります。 ## Train [`Trainer`] を使用したモデルの微調整に慣れていない場合は、[ここ](../training#finetune-with-trainer) の基本的なチュートリアルをご覧ください。 これでモデルのトレーニングを開始する準備が整いました。 [`AutoModelForSemanticSegmentation`] を使用して SegFormer をロードし、ラベル ID とラベル クラス間のマッピングをモデルに渡します。 ```py >>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer >>> model = AutoModelForSemanticSegmentation.from_pretrained(checkpoint, id2label=id2label, label2id=label2id) ``` この時点で残っている手順は次の 3 つだけです。 1. [`TrainingArguments`] でトレーニング ハイパーパラメータを定義します。 `image` 列が削除されるため、未使用の列を削除しないことが重要です。 `image` 列がないと、`pixel_values` を作成できません。この動作を防ぐには、`remove_unused_columns=False`を設定してください。他に必要なパラメータは、モデルの保存場所を指定する `output_dir` だけです。 `push_to_hub=True`を設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。各エポックの終了時に、[`Trainer`] は IoU メトリックを評価し、トレーニング チェックポイントを保存します。 2. トレーニング引数を、モデル、データセット、トークナイザー、データ照合器、および `compute_metrics` 関数とともに [`Trainer`] に渡します。 3. [`~Trainer.train`] を呼び出してモデルを微調整します。 ```py >>> training_args = TrainingArguments( ... output_dir="segformer-b0-scene-parse-150", ... learning_rate=6e-5, ... num_train_epochs=50, ... per_device_train_batch_size=2, ... per_device_eval_batch_size=2, ... save_total_limit=3, ... eval_strategy="steps", ... save_strategy="steps", ... save_steps=20, ... eval_steps=20, ... logging_steps=1, ... eval_accumulation_steps=5, ... remove_unused_columns=False, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=train_ds, ... eval_dataset=test_ds, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` トレーニングが完了したら、 [`~transformers.Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。 ```py >>> trainer.push_to_hub() ``` Keras を使用したモデルの微調整に慣れていない場合は、まず [基本チュートリアル](./training#train-a-tensorflow-model-with-keras) を確認してください。 TensorFlow でモデルを微調整するには、次の手順に従います。 1. トレーニングのハイパーパラメータを定義し、オプティマイザーと学習率スケジュールを設定します。 2. 事前トレーニングされたモデルをインスタンス化します。 3. 🤗 データセットを `tf.data.Dataset` に変換します。 4. モデルをコンパイルします。 5. コールバックを追加してメトリクスを計算し、モデルを 🤗 Hub にアップロードします 6. `fit()` メソッドを使用してトレーニングを実行します。 まず、ハイパーパラメーター、オプティマイザー、学習率スケジュールを定義します。 ```py >>> from transformers import create_optimizer >>> batch_size = 2 >>> num_epochs = 50 >>> num_train_steps = len(train_ds) * num_epochs >>> learning_rate = 6e-5 >>> weight_decay_rate = 0.01 >>> optimizer, lr_schedule = create_optimizer( ... init_lr=learning_rate, ... num_train_steps=num_train_steps, ... weight_decay_rate=weight_decay_rate, ... num_warmup_steps=0, ... ) ``` 次に、ラベル マッピングとともに [`TFAutoModelForSemanticSegmentation`] を使用して SegFormer をロードし、それをコンパイルします。 オプティマイザ。 Transformers モデルにはすべてデフォルトのタスク関連の損失関数があるため、次の場合を除き、損失関数を指定する必要はないことに注意してください。 ```py >>> from transformers import TFAutoModelForSemanticSegmentation >>> model = TFAutoModelForSemanticSegmentation.from_pretrained( ... checkpoint, ... id2label=id2label, ... label2id=label2id, ... ) >>> model.compile(optimizer=optimizer) # No loss argument! ``` [`~datasets.Dataset.to_tf_dataset`] と [`DefaultDataCollat​​or`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。 ```py >>> from transformers import DefaultDataCollator >>> data_collator = DefaultDataCollator(return_tensors="tf") >>> tf_train_dataset = train_ds.to_tf_dataset( ... columns=["pixel_values", "label"], ... shuffle=True, ... batch_size=batch_size, ... collate_fn=data_collator, ... ) >>> tf_eval_dataset = test_ds.to_tf_dataset( ... columns=["pixel_values", "label"], ... shuffle=True, ... batch_size=batch_size, ... collate_fn=data_collator, ... ) ``` 予測から精度を計算し、モデルを 🤗 ハブにプッシュするには、[Keras callbacks](../main_classes/keras_callbacks) を使用します。 `compute_metrics` 関数を [`KerasMetricCallback`] に渡します。 そして [`PushToHubCallback`] を使用してモデルをアップロードします。 ```py >>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback >>> metric_callback = KerasMetricCallback( ... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"] ... ) >>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor) >>> callbacks = [metric_callback, push_to_hub_callback] ``` ついに、モデルをトレーニングする準備が整いました。トレーニングおよび検証データセット、エポック数、 モデルを微調整するためのコールバック: ```py >>> model.fit( ... tf_train_dataset, ... validation_data=tf_eval_dataset, ... callbacks=callbacks, ... epochs=num_epochs, ... ) ``` おめでとう!モデルを微調整し、🤗 Hub で共有しました。これで推論に使用できるようになりました。 ## Inference モデルを微調整したので、それを推論に使用できるようになりました。 推論のために画像をロードします。 ```py >>> image = ds[0]["image"] >>> image ```
Image of bedroom
推論用に微調整されたモデルを試す最も簡単な方法は、それを [`pipeline`] で使用することです。モデルを使用して画像セグメンテーション用の `pipeline`をインスタンス化し、それに画像を渡します。 ```py >>> from transformers import pipeline >>> segmenter = pipeline("image-segmentation", model="my_awesome_seg_model") >>> segmenter(image) [{'score': None, 'label': 'wall', 'mask': }, {'score': None, 'label': 'sky', 'mask': }, {'score': None, 'label': 'floor', 'mask': }, {'score': None, 'label': 'ceiling', 'mask': }, {'score': None, 'label': 'bed ', 'mask': }, {'score': None, 'label': 'windowpane', 'mask': }, {'score': None, 'label': 'cabinet', 'mask': }, {'score': None, 'label': 'chair', 'mask': }, {'score': None, 'label': 'armchair', 'mask': }] ``` 必要に応じて、`pipeline`の結果を手動で複製することもできます。画像を画像プロセッサで処理し、`pixel_values` を GPU に配置します。 ```py >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use GPU if available, otherwise use a CPU >>> encoding = image_processor(image, return_tensors="pt") >>> pixel_values = encoding.pixel_values.to(device) ``` 入力をモデルに渡し、`logits`を返します。 ```py >>> outputs = model(pixel_values=pixel_values) >>> logits = outputs.logits.cpu() ``` 次に、ロジットを元の画像サイズに再スケールします。 ```py >>> upsampled_logits = nn.functional.interpolate( ... logits, ... size=image.size[::-1], ... mode="bilinear", ... align_corners=False, ... ) >>> pred_seg = upsampled_logits.argmax(dim=1)[0] ``` 画像プロセッサをロードして画像を前処理し、入力を TensorFlow テンソルとして返します。 ```py >>> from transformers import AutoImageProcessor >>> image_processor = AutoImageProcessor.from_pretrained("MariaK/scene_segmentation") >>> inputs = image_processor(image, return_tensors="tf") ``` 入力をモデルに渡し、`logits`を返します。 ```py >>> from transformers import TFAutoModelForSemanticSegmentation >>> model = TFAutoModelForSemanticSegmentation.from_pretrained("MariaK/scene_segmentation") >>> logits = model(**inputs).logits ``` 次に、ロジットを元の画像サイズに再スケールし、クラス次元に argmax を適用します。 ```py >>> logits = tf.transpose(logits, [0, 2, 3, 1]) >>> upsampled_logits = tf.image.resize( ... logits, ... # We reverse the shape of `image` because `image.size` returns width and height. ... image.size[::-1], ... ) >>> pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0] ``` 結果を視覚化するには、[データセット カラー パレット](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) を、それぞれをマップする `ade_palette()` としてロードします。クラスを RGB 値に変換します。次に、画像と予測されたセグメンテーション マップを組み合わせてプロットできます。 ```py >>> import matplotlib.pyplot as plt >>> import numpy as np >>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) >>> palette = np.array(ade_palette()) >>> for label, color in enumerate(palette): ... color_seg[pred_seg == label, :] = color >>> color_seg = color_seg[..., ::-1] # convert to BGR >>> img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map >>> img = img.astype(np.uint8) >>> plt.figure(figsize=(15, 10)) >>> plt.imshow(img) >>> plt.show() ```
Image of bedroom overlaid with segmentation map