# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Perceiver model.""" import copy import inspect import math import tempfile import unittest import warnings from typing import Dict, List, Tuple import numpy as np from datasets import load_dataset from transformers import PerceiverConfig from transformers.testing_utils import ( IS_ROCM_SYSTEM, require_torch, require_torch_multi_gpu, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverModel, PerceiverTokenizer, ) from transformers.models.auto.modeling_auto import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_MASKED_LM_MAPPING_NAMES, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_MAPPING_NAMES, ) if is_vision_available(): from PIL import Image from transformers import PerceiverImageProcessor class PerceiverModelTester: def __init__( self, parent, batch_size=13, seq_length=7, num_channels=3, image_size=32, train_size=[20, 20], num_frames=5, audio_samples_per_frame=200, samples_per_patch=20, nchunks=20, num_latents=10, d_latents=20, d_model=64, num_blocks=1, num_self_attends_per_block=2, num_self_attention_heads=1, num_cross_attention_heads=1, self_attention_widening_factor=4, cross_attention_widening_factor=4, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_act="gelu", attention_probs_dropout_prob=0.1, initializer_range=0.02, max_position_embeddings=7, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.num_channels = num_channels self.image_size = image_size self.train_size = train_size self.num_frames = num_frames self.audio_samples_per_frame = audio_samples_per_frame self.samples_per_patch = samples_per_patch self.nchunks = nchunks self.num_latents = num_latents self.d_latents = d_latents self.d_model = d_model self.num_blocks = num_blocks self.num_self_attends_per_block = num_self_attends_per_block self.num_self_attention_heads = num_self_attention_heads self.num_cross_attention_heads = num_cross_attention_heads self.self_attention_widening_factor = self_attention_widening_factor self.cross_attention_widening_factor = cross_attention_widening_factor self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_act = hidden_act self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope # set subsampling for multimodal model (take first chunk) image_chunk_size = np.prod((self.num_frames, self.image_size, self.image_size)) // self.nchunks audio_chunk_size = self.num_frames * self.audio_samples_per_frame // self.samples_per_patch // self.nchunks self.subsampling = { "image": torch.arange(0, image_chunk_size), "audio": torch.arange(0, audio_chunk_size), "label": None, } def prepare_config_and_inputs(self, model_class=None): config = self.get_config() input_mask = None sequence_labels = None token_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.num_labels) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) if model_class is None or model_class.__name__ == "PerceiverModel": inputs = floats_tensor([self.batch_size, self.seq_length, config.d_model], scale=1.0) return config, inputs, input_mask, sequence_labels, token_labels elif model_class.__name__ in ["PerceiverForMaskedLM", "PerceiverForSequenceClassification"]: inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # input mask is only relevant for text inputs if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) elif model_class.__name__ == "PerceiverForImageClassificationLearned": inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) elif model_class.__name__ == "PerceiverForImageClassificationFourier": inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) elif model_class.__name__ == "PerceiverForImageClassificationConvProcessing": inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) elif model_class.__name__ == "PerceiverForOpticalFlow": inputs = floats_tensor([self.batch_size, 2, 27, self.train_size[0], self.train_size[1]]) elif model_class.__name__ == "PerceiverForMultimodalAutoencoding": images = torch.randn( (self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size), device=torch_device, ) audio = torch.randn( (self.batch_size, self.num_frames * self.audio_samples_per_frame, 1), device=torch_device ) inputs = { "image": images, "audio": audio, "label": torch.zeros((self.batch_size, self.num_labels), device=torch_device), } else: raise ValueError(f"Model class {model_class} not supported") return config, inputs, input_mask, sequence_labels, token_labels def get_config(self): return PerceiverConfig( num_latents=self.num_latents, d_latents=self.d_latents, d_model=self.d_model, qk_channels=self.d_latents, v_channels=self.d_latents, num_blocks=self.num_blocks, num_self_attends_per_block=self.num_self_attends_per_block, num_self_attention_heads=self.num_self_attention_heads, num_cross_attention_heads=self.num_cross_attention_heads, self_attention_widening_factor=self.self_attention_widening_factor, cross_attention_widening_factor=self.cross_attention_widening_factor, vocab_size=self.vocab_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, max_position_embeddings=self.max_position_embeddings, image_size=self.image_size, train_size=self.train_size, num_frames=self.num_frames, audio_samples_per_frame=self.audio_samples_per_frame, samples_per_patch=self.samples_per_patch, num_labels=self.num_labels, output_num_channels=32, _label_trainable_num_channels=16, ) def get_pipeline_config(self): config = self.get_config() # Byte level vocab config.vocab_size = 261 config.max_position_embeddings = 40 return config def create_and_check_for_masked_lm(self, config, inputs, input_mask, sequence_labels, token_labels): model = PerceiverForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification(self, config, inputs, input_mask, sequence_labels, token_labels): model = PerceiverForSequenceClassification(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_image_classification_learned( self, config, inputs, input_mask, sequence_labels, token_labels ): model = PerceiverForImageClassificationLearned(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_image_classification_fourier( self, config, inputs, input_mask, sequence_labels, token_labels ): model = PerceiverForImageClassificationFourier(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_image_classification_conv( self, config, inputs, input_mask, sequence_labels, token_labels ): model = PerceiverForImageClassificationConvProcessing(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs inputs_dict = {"inputs": inputs, "attention_mask": input_mask} return config, inputs_dict def prepare_config_and_inputs_for_model_class(self, model_class): config_and_inputs = self.prepare_config_and_inputs(model_class) config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs inputs_dict = {"inputs": inputs, "attention_mask": input_mask} return config, inputs_dict @require_torch class PerceiverModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( PerceiverModel, PerceiverForMaskedLM, PerceiverForImageClassificationLearned, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForOpticalFlow, PerceiverForMultimodalAutoencoding, PerceiverForSequenceClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": PerceiverModel, "fill-mask": PerceiverForMaskedLM, "image-classification": ( PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, ), "text-classification": PerceiverForSequenceClassification, "zero-shot": PerceiverForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_head_masking = False test_torchscript = False maxDiff = None def setUp(self): self.model_tester = PerceiverModelTester(self) self.config_tester = ConfigTester( self, config_class=PerceiverConfig, hidden_size=37, common_properties=["d_model", "num_self_attention_heads", "num_cross_attention_heads"], ) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class.__name__ == "PerceiverForMultimodalAutoencoding": inputs_dict["subsampled_output_points"] = self.model_tester.subsampling if return_labels: if model_class.__name__ in [ *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(), "PerceiverForImageClassificationLearned", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationConvProcessing", *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(), ]: inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class.__name__ in [ *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES.values(), *MODEL_FOR_MASKED_LM_MAPPING_NAMES.values(), ]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def test_config(self): self.config_tester.run_common_tests() def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForMaskedLM) self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForSequenceClassification) self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_image_classification_learned(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( model_class=PerceiverForImageClassificationLearned ) self.model_tester.create_and_check_for_image_classification_learned(*config_and_inputs) def test_for_image_classification_fourier(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( model_class=PerceiverForImageClassificationFourier ) self.model_tester.create_and_check_for_image_classification_fourier(*config_and_inputs) def test_for_image_classification_conv(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( model_class=PerceiverForImageClassificationConvProcessing ) self.model_tester.create_and_check_for_image_classification_conv(*config_and_inputs) def test_model_get_set_embeddings(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) # we overwrite this, as the embeddings of Perceiver are an instance of nn.Parameter # and Perceiver doesn't support get_output_embeddings self.assertIsInstance(model.get_input_embeddings(), (nn.Parameter)) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: if model_class.__name__ in [ *MODEL_MAPPING_NAMES.values(), "PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding", ]: continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) config.return_dict = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_forward_signature(self): for model_class in self.all_model_classes: config, _ = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["inputs"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_determinism(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): inputs_dict = self._prepare_for_class(inputs_dict, model_class) first = model(**inputs_dict)[0] second = model(**inputs_dict)[0] if model_class.__name__ == "PerceiverForMultimodalAutoencoding": # model outputs a dictionary with logits per modality, let's verify each modality for modality in first.keys(): out_1 = first[modality].cpu().numpy() out_2 = second[modality].cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) else: out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_attention_outputs(self): seq_len = getattr(self.model_tester, "num_latents", None) for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) config.return_dict = True inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self_attentions = outputs.attentions cross_attentions = outputs.cross_attentions # check expected number of attentions depending on model class expected_num_self_attentions = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block if model.__class__.__name__ == "PerceiverModel": # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder expected_num_cross_attentions = 1 else: # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder expected_num_cross_attentions = 2 self.assertEqual(len(self_attentions), expected_num_self_attentions) self.assertEqual(len(cross_attentions), expected_num_cross_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self_attentions = outputs.attentions cross_attentions = outputs.cross_attentions self.assertEqual(len(self_attentions), expected_num_self_attentions) self.assertEqual(len(cross_attentions), expected_num_cross_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_self_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_self_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_self_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block + 1 self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.num_latents self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.d_latents], ) for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_model_outputs_equivalence(self): def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def test_retain_grad_hidden_states_attentions(self): # no need to test all models as different heads yield the same functionality model_class = PerceiverForMaskedLM config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) config.output_hidden_states = True config.output_attentions = True model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] # Encoder-only model hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_feed_forward_chunking(self): for model_class in self.all_model_classes: original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) torch.manual_seed(0) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model.eval() hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] torch.manual_seed(0) config.chunk_size_feed_forward = 1 model = model_class(config) model.to(torch_device) model.eval() hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] if model_class.__name__ == "PerceiverForMultimodalAutoencoding": # model outputs a dictionary with logits for each modality for modality in hidden_states_no_chunk.keys(): self.assertTrue( torch.allclose(hidden_states_no_chunk[modality], hidden_states_with_chunk[modality], atol=1e-3) ) else: self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3)) def test_save_load(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if model_class.__name__ == "PerceiverForMultimodalAutoencoding": for modality in outputs[0].keys(): out_2 = outputs[0][modality].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0][modality].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) else: out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_correct_missing_keys(self): if not self.test_missing_keys: return config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # most Perceiver models don't have a typical head like is the case with BERT if model_class.__name__ in [ "PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding", *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(), "PerceiverForImageClassificationLearned", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationConvProcessing", *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(), ]: continue model = model_class(config) base_model_prefix = model.base_model_prefix if hasattr(model, base_model_prefix): with tempfile.TemporaryDirectory() as temp_dir_name: model.base_model.save_pretrained(temp_dir_name) model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True) with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"): self.assertGreater(len(loading_info["missing_keys"]), 0) def test_problem_types(self): problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if model_class.__name__ not in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(): continue config, inputs, input_mask, _, _ = self.model_tester.prepare_config_and_inputs(model_class=model_class) inputs_dict = {"inputs": inputs, "attention_mask": input_mask} for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @require_torch_multi_gpu @unittest.skip( reason=( "Perceiver does not work with data parallel (DP) because of a bug in PyTorch:" " https://github.com/pytorch/pytorch/issues/36035" ) ) def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT") def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings") def test_resize_embeddings_untied(self): pass @unittest.skip(reason="Perceiver doesn't support inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Perceiver doesn't support the AutoModel API") def test_load_with_mismatched_shapes(self): pass @slow def test_model_from_pretrained(self): model_name = "deepmind/language-perceiver" model = PerceiverModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image # Helper functions for optical flow integration test def prepare_optical_flow_images(): dataset = load_dataset("hf-internal-testing/fixtures_sintel", split="test", trust_remote_code=True) image1 = Image.open(dataset[0]["file"]).convert("RGB") image2 = Image.open(dataset[0]["file"]).convert("RGB") return image1, image2 def normalize(img): return img / 255.0 * 2 - 1 def extract_image_patches(x, kernel, stride=1, dilation=1): # Do TF 'SAME' Padding b, c, h, w = x.shape h2 = math.ceil(h / stride) w2 = math.ceil(w / stride) pad_row = (h2 - 1) * stride + (kernel - 1) * dilation + 1 - h pad_col = (w2 - 1) * stride + (kernel - 1) * dilation + 1 - w x = torch.nn.functional.pad(x, (pad_row // 2, pad_row - pad_row // 2, pad_col // 2, pad_col - pad_col // 2)) # Extract patches patches = x.unfold(2, kernel, stride).unfold(3, kernel, stride) patches = patches.permute(0, 4, 5, 1, 2, 3).contiguous() return patches.view(b, -1, patches.shape[-2], patches.shape[-1]) @require_torch @require_vision class PerceiverModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): tokenizer = PerceiverTokenizer.from_pretrained("deepmind/language-perceiver") model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver") model.to(torch_device) # prepare inputs text = "This is an incomplete sentence where some words are missing." encoding = tokenizer(text, padding="max_length", return_tensors="pt") # mask " missing.". encoding.input_ids[0, 52:61] = tokenizer.mask_token_id inputs, input_mask = encoding.input_ids.to(torch_device), encoding.attention_mask.to(torch_device) # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, tokenizer.model_max_length, len(tokenizer))) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [[-10.8609, -10.7651, -10.9187], [-12.1689, -11.9389, -12.1479], [-12.1518, -11.9707, -12.2073]], device=torch_device, ) self.assertTrue(torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4)) expected_greedy_predictions = [38, 115, 111, 121, 121, 111, 116, 109, 52] masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist() self.assertListEqual(expected_greedy_predictions, masked_tokens_predictions) @slow def test_inference_image_classification(self): image_processor = PerceiverImageProcessor() model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.1652, -0.1992, -0.7520], device=torch_device) atol = 1e-3 if IS_ROCM_SYSTEM else 1e-4 self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=atol)) @slow def test_inference_image_classification_fourier(self): image_processor = PerceiverImageProcessor() model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.1295, -0.2832, 0.3226], device=torch_device) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_image_classification_conv(self): image_processor = PerceiverImageProcessor() model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.1186, 0.0554, 0.0897], device=torch_device) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_optical_flow(self): model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver") model.to(torch_device) # prepare inputs image1, image2 = prepare_optical_flow_images() img1 = normalize(np.array(image1)) img2 = normalize(np.array(image1)) # stack images img1 = torch.tensor(np.moveaxis(img1, -1, 0)) img2 = torch.tensor(np.moveaxis(img2, -1, 0)) images = torch.stack([img1, img2], dim=0) # extract 3x3 patches patch_size = model.config.train_size inputs = images[..., : patch_size[0], : patch_size[1]].unsqueeze(0) batch_size, _, C, H, W = inputs.shape patches = extract_image_patches(inputs.view(batch_size * 2, C, H, W), kernel=3) _, C, H, W = patches.shape patches = patches.view(batch_size, -1, C, H, W).float() # forward pass with torch.no_grad(): outputs = model(inputs=patches.to(torch_device)) logits = outputs.logits # verify logits expected_shape = torch.Size((1, 368, 496, 2)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [ [[0.0025, -0.0050], [0.0025, -0.0049], [0.0025, -0.0048]], [[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0047]], [[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0046]], ], device=torch_device, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_interpolate_pos_encoding(self): image_processor = PerceiverImageProcessor(size={"height": 384, "width": 384}) model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask, interpolate_pos_encoding=True) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape)