# MarianMT
## Overview
[MarianMT](https://huggingface.co/papers/1804.00344) is a machine translation model trained with the Marian framework which is written in pure C++. The framework includes its own custom auto-differentiation engine and efficient meta-algorithms to train encoder-decoder models like BART.
All MarianMT models are transformer encoder-decoders with 6 layers in each component, use static sinusoidal positional embeddings, don't have a layernorm embedding, and the model starts generating with the prefix `pad_token_id` instead of ``.
You can find all the original MarianMT checkpoints under the [Language Technology Research Group at the University of Helsinki](https://huggingface.co/Helsinki-NLP/models?search=opus-mt) organization.
> [!TIP]
> This model was contributed by [sshleifer](https://huggingface.co/sshleifer).
>
> Click on the MarianMT models in the right sidebar for more examples of how to apply MarianMT to translation tasks.
The example below demonstrates how to translate text using [`Pipeline`] or the [`AutoModel`] class.
```python
import torch
from transformers import pipeline
pipeline = pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, device=0)
pipeline("Hello, how are you?")
```
```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, attn_implementation="sdpa", device_map="auto")
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
```python
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("Helsinki-NLP/opus-mt-en-de")
visualizer("Hello, how are you?")
```
## Notes
- MarianMT models are ~298MB on disk and there are more than 1000 models. Check this [list](https://huggingface.co/Helsinki-NLP) for supported language pairs. The language codes may be inconsistent. Two digit codes can be found [here](https://developers.google.com/admin-sdk/directory/v1/languages) while three digit codes may require further searching.
- Models that require BPE preprocessing are not supported.
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`. Language codes formatted like `es_AR` usually refer to the `code_{region}`. For example, `es_AR` refers to Spanish from Argentina.
- If a model can output multiple languages, prepend the desired output language to `src_txt` as shown below. New multilingual models from the [Tatoeba-Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge) require 3 character language codes.
```py
add code snippet here
- Older multilingual models use 2 character language codes.
```py
add code snippet here
## MarianConfig
[[autodoc]] MarianConfig
## MarianTokenizer
[[autodoc]] MarianTokenizer
- build_inputs_with_special_tokens
## MarianModel
[[autodoc]] MarianModel
- forward
## MarianMTModel
[[autodoc]] MarianMTModel
- forward
## MarianForCausalLM
[[autodoc]] MarianForCausalLM
- forward
## TFMarianModel
[[autodoc]] TFMarianModel
- call
## TFMarianMTModel
[[autodoc]] TFMarianMTModel
- call
## FlaxMarianModel
[[autodoc]] FlaxMarianModel
- __call__
## FlaxMarianMTModel
[[autodoc]] FlaxMarianMTModel
- __call__