# Copyright 2024 BigCode and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Starcoder2 model.""" import unittest import pytest from transformers import Starcoder2Config, is_torch_available from transformers.testing_utils import ( require_bitsandbytes, require_flash_attn, require_torch, require_torch_accelerator, require_torch_gpu, slow, torch_device, ) if is_torch_available(): import torch from transformers import ( AutoTokenizer, Starcoder2ForCausalLM, Starcoder2ForSequenceClassification, Starcoder2ForTokenClassification, Starcoder2Model, ) from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester class Starcoder2ModelTester(CausalLMModelTester): config_class = Starcoder2Config if is_torch_available(): base_model_class = Starcoder2Model causal_lm_class = Starcoder2ForCausalLM sequence_class = Starcoder2ForSequenceClassification token_class = Starcoder2ForTokenClassification @require_torch class Starcoder2ModelTest(CausalLMModelTest, unittest.TestCase): all_model_classes = ( (Starcoder2Model, Starcoder2ForCausalLM, Starcoder2ForSequenceClassification, Starcoder2ForTokenClassification) if is_torch_available() else () ) test_headmasking = False test_pruning = False model_tester_class = Starcoder2ModelTester pipeline_model_mapping = ( { "feature-extraction": Starcoder2Model, "text-classification": Starcoder2ForSequenceClassification, "token-classification": Starcoder2ForTokenClassification, "text-generation": Starcoder2ForCausalLM, } if is_torch_available() else {} ) @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_inference_equivalence_right_padding(self): self.skipTest(reason="Starcoder2 flash attention does not support right padding") @slow @require_torch_accelerator class Starcoder2IntegrationTest(unittest.TestCase): def test_starcoder2_batched_generation_sdpa(self): EXPECTED_TEXT = [ "Hello my name is Younes and I am a student at the University of Liverpool. I am currently studying for my MSc in Computer Science. I am interested in the field of Machine Learning and I am currently working on", "def hello_world():\n\treturn 'Hello World!'\n\n@app.route('/hello/')\ndef hello_name(name):\n\treturn 'Hello %s!' % name\n\n@app", ] model_id = "bigcode/starcoder2-7b" model = Starcoder2ForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa" ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token text = ["Hello my name is Younes and", "def hello_world():"] inputs = tokenizer(text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=40, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT, output_text) def test_starcoder2_batched_generation_eager(self): EXPECTED_TEXT = [ "Hello my name is Younes and I am a student at the University of Liverpool. I am currently studying for my MSc in Computer Science. I am interested in the field of Machine Learning and I am currently working on", "def hello_world():\n\treturn 'Hello World!'\n\n@app.route('/hello/')\ndef hello_name(name):\n\treturn 'Hello %s!' % name\n\n@app", ] model_id = "bigcode/starcoder2-7b" model = Starcoder2ForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="eager" ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token text = ["Hello my name is Younes and", "def hello_world():"] inputs = tokenizer(text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=40, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT, output_text) @require_flash_attn @pytest.mark.flash_attn_test def test_starcoder2_batched_generation_fa2(self): EXPECTED_TEXT = [ "Hello my name is Younes and I am a student at the University of Liverpool. I am currently studying for my MSc in Computer Science. I am interested in the field of Machine Learning and I am currently working on", "def hello_world():\n\treturn 'Hello World!'\n\n@app.route('/hello/')\ndef hello_name(name):\n\treturn 'Hello %s!' % name\n\n@app", ] model_id = "bigcode/starcoder2-7b" model = Starcoder2ForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2" ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token text = ["Hello my name is Younes and", "def hello_world():"] inputs = tokenizer(text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=40, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT, output_text) @require_bitsandbytes def test_starcoder2_batched_generation_4bit(self): EXPECTED_TEXT = [ 'Hello my name is Younes and I am a student at the University of Maryland. I am currently working on a project that is related to the topic of "How to make a game". I am currently working on a project', 'def hello_world():\n\treturn "Hello World"\n\n@app.route(\'/hello/\')\ndef hello_name(name):\n\treturn "Hello " + name\n\n@app.route', ] model_id = "bigcode/starcoder2-7b" model = Starcoder2ForCausalLM.from_pretrained(model_id, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token text = ["Hello my name is Younes and", "def hello_world():"] inputs = tokenizer(text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=40, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT, output_text)