# Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import unittest from huggingface_hub import hf_hub_download from transformers import UdopConfig, is_torch_available, is_vision_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch import torch.nn.functional as F from transformers import UdopEncoderModel, UdopForConditionalGeneration, UdopModel, UdopProcessor if is_vision_available(): from PIL import Image class UdopModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, decoder_seq_length=9, # For common tests is_training=True, use_attention_mask=True, use_labels=True, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=32, dropout_rate=0.1, initializer_factor=0.002, eos_token_id=1, pad_token_id=0, scope=None, decoder_layers=None, range_bbox=1000, decoder_start_token_id=0, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.scope = None self.decoder_layers = decoder_layers self.range_bbox = range_bbox self.decoder_start_token_id = decoder_start_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.encoder_seq_length, 4], self.range_bbox).float() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None decoder_attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = self.get_config() return ( config, input_ids, bbox, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def get_config(self): return UdopConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def create_and_check_model( self, config, input_ids, bbox, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = UdopModel(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, bbox=bbox, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) result = model(input_ids=input_ids, bbox=bbox, decoder_input_ids=decoder_input_ids) decoder_output = result.last_hidden_state decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_with_lm_head( self, config, input_ids, bbox, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = UdopForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, bbox=bbox, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertEqual(len(outputs), 4) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_generate_with_past_key_values( self, config, input_ids, bbox, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = UdopForConditionalGeneration(config=config).to(torch_device).eval() torch.manual_seed(0) output_without_past_cache = model.generate( input_ids[:1], bbox=bbox[:1, :, :], num_beams=2, max_length=5, do_sample=True, use_cache=False ) torch.manual_seed(0) output_with_past_cache = model.generate( input_ids[:1], bbox=bbox[:1, :, :], num_beams=2, max_length=5, do_sample=True ) self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache)) def create_and_check_model_fp16_forward( self, config, input_ids, bbox, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = UdopForConditionalGeneration(config=config).to(torch_device).half().eval() output = model(input_ids, bbox=bbox, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids).logits self.parent.assertFalse(torch.isnan(output).any().item()) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "bbox": bbox, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "use_cache": False, } return config, inputs_dict @require_torch class UdopModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( UdopModel, UdopForConditionalGeneration, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": UdopModel, "image-text-to-text": UdopForConditionalGeneration} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_torchscript = False test_head_masking = False test_resize_embeddings = True test_model_parallel = False is_encoder_decoder = True test_cpu_offload = False # The small UDOP model needs higher percentages for CPU/MP tests model_split_percents = [0.8, 0.9] def setUp(self): self.model_tester = UdopModelTester(self) self.config_tester = ConfigTester(self, config_class=UdopConfig, d_model=37) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class.__name__ == "UdopForConditionalGeneration": if return_labels: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_with_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_lm_head(*config_and_inputs) def test_generate_with_past_key_values(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_generate_with_past_key_values(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Can't do half precision") def test_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) @unittest.skip(reason="Gradient checkpointing is not supported by this model") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = sorted([*signature.parameters.keys()]) expected_arg_names = [ "attention_mask", "bbox", "cache_position", "cross_attn_head_mask", "decoder_attention_mask", "decoder_head_mask", "decoder_input_ids", "decoder_inputs_embeds", "encoder_outputs", "head_mask", "input_ids", "inputs_embeds", ] if model_class in self.all_generative_model_classes: expected_arg_names.append( "labels", ) expected_arg_names = sorted(expected_arg_names) self.assertListEqual(sorted(arg_names[: len(expected_arg_names)]), expected_arg_names) # overwrite because T5 doesn't accept position ids as input and expects `decoder_input_ids` def test_custom_4d_attention_mask(self): for model_class in self.all_generative_model_classes: config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config).to(device=torch_device, dtype=torch.float32) ( input_ids, _, input_ids_shared_prefix, mask_shared_prefix, _, ) = self._get_custom_4d_mask_test_data() logits = model.forward( decoder_input_ids=input_ids, input_ids=input_dict["input_ids"][:3], bbox=input_dict["bbox"][:3], ).logits # logits.shape == torch.Size([3, 4, ...]) logits_shared_prefix = model( input_ids=input_dict["input_ids"][:1], bbox=input_dict["bbox"][:1], decoder_input_ids=input_ids_shared_prefix, decoder_attention_mask=mask_shared_prefix, )[0] # logits_shared_prefix.shape == torch.Size([1, 6, ...]) out_last_tokens = logits[:, -1, :] # last tokens in each batch line out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :] # last three tokens # comparing softmax-normalized logits: normalized_0 = F.softmax(out_last_tokens) normalized_1 = F.softmax(out_shared_prefix_last_tokens) torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-4) @unittest.skip( "Not currently compatible. Fails with - NotImplementedError: Cannot copy out of meta tensor; no data!" ) def test_save_load_low_cpu_mem_usage(self): pass @slow def test_model_from_pretrained(self): model_name = "microsoft/udop-large" model = UdopForConditionalGeneration.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="TODO: Fix me @joao") def test_generate_with_head_masking(self): pass @unittest.skip(reason="TODO: Fix me @joao") def test_generate_without_input_ids(self): pass class UdopEncoderOnlyModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, seq_length=7, # For common tests is_training=False, use_attention_mask=True, hidden_size=32, num_hidden_layers=5, decoder_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=32, dropout_rate=0.1, initializer_factor=0.002, eos_token_id=1, pad_token_id=0, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size # For common tests self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.decoder_layers = decoder_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.scope = None self.range_bbox = range_bbox def get_config(self): return UdopConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, is_encoder_decoder=False, ) def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).float() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) config = self.get_config() return ( config, input_ids, bbox, attention_mask, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "attention_mask": attention_mask, } return config, inputs_dict def create_and_check_model( self, config, input_ids, bbox, attention_mask, ): model = UdopEncoderModel(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, ) encoder_output = result.last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_fp16_forward( self, config, input_ids, bbox, attention_mask, ): model = UdopEncoderModel(config=config).to(torch_device).half().eval() output = model(input_ids, bbox=bbox, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) class UdopEncoderOnlyModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (UdopEncoderModel,) if is_torch_available() else () test_pruning = False test_torchscript = False test_head_masking = False test_resize_embeddings = False test_model_parallel = False all_parallelizable_model_classes = (UdopEncoderModel,) if is_torch_available() else () def setUp(self): self.model_tester = UdopEncoderOnlyModelTester(self) self.config_tester = ConfigTester(self, config_class=UdopConfig, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # overwrite because T5 doesn't accept position ids as input and expects `decoder_input_ids` def test_custom_4d_attention_mask(self): for model_class in self.all_generative_model_classes: config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config).to(device=torch_device, dtype=torch.float32) ( input_ids, _, input_ids_shared_prefix, mask_shared_prefix, _, ) = self._get_custom_4d_mask_test_data() logits = model.forward( decoder_input_ids=input_ids, input_ids=input_dict["input_ids"][:3], ).logits # logits.shape == torch.Size([3, 4, ...]) logits_shared_prefix = model( input_ids=input_dict["input_ids"][:1], decoder_input_ids=input_ids_shared_prefix, decoder_attention_mask=mask_shared_prefix, )[0] # logits_shared_prefix.shape == torch.Size([1, 6, ...]) out_last_tokens = logits[:, -1, :] # last tokens in each batch line out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :] # last three tokens # comparing softmax-normalized logits: normalized_0 = F.softmax(out_last_tokens) normalized_1 = F.softmax(out_shared_prefix_last_tokens) torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-4) @unittest.skip( "Not currently compatible. Fails with - NotImplementedError: Cannot copy out of meta tensor; no data!" ) def test_save_load_low_cpu_mem_usage(self): pass @require_torch @require_sentencepiece @require_tokenizers @require_vision @slow class UdopModelIntegrationTests(unittest.TestCase): @cached_property def image(self): filepath = hf_hub_download( repo_id="hf-internal-testing/fixtures_docvqa", filename="document_2.png", repo_type="dataset" ) image = Image.open(filepath).convert("RGB") return image @cached_property def processor(self): return UdopProcessor.from_pretrained("microsoft/udop-large") @cached_property def model(self): return UdopForConditionalGeneration.from_pretrained("microsoft/udop-large").to(torch_device) def test_conditional_generation(self): processor = self.processor model = self.model prompt = "Question answering. In which year is the report made?" encoding = processor(images=self.image, text=prompt, return_tensors="pt").to(torch_device) predicted_ids = model.generate(**encoding) predicted_text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] self.assertEqual(predicted_text, "2013")