# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """: This script is used to test training a model using Tensor Parallelism and Data Parallelism. Usage: export CUDA_VISIBLE_DEVICES=0,1,2,3 export CUDA_VISIBLE_DEVICES=4,5,6,7 export CUDA_VISIBLE_DEVICES=5,6,7 TP_SIZE=2 DP_SIZE=2 torchrun --nproc_per_node=4 --rdzv_endpoint=localhost:29503 test_train.py CP_SIZE=2 DP_SIZE=2 torchrun --nproc_per_node=4 test_train.py CP_SIZE=2 TP_SIZE=2 torchrun --nproc_per_node=4 test_train.py TP_SIZE=1 CP_SIZE=4 torchrun --nproc_per_node=4 test_train.py TP_SIZE=1 DP_SIZE=4 torchrun --nproc_per_node=4 test_train.py TP_SIZE=4 DP_SIZE=1 torchrun --nproc_per_node=4 --rdzv_endpoint=localhost:29503 test_train.py IGNORE_SANITY=1 CP_SIZE=1 TP_SIZE=1 DP_SIZE=1 torchrun --nproc_per_node=1 --rdzv_endpoint=l ocalhost:29504 test_train.py """ import logging import os from collections.abc import Iterable from contextlib import nullcontext from typing import Optional import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.optim as optim import wandb from datasets import load_dataset from torch.distributed.checkpoint.state_dict import get_state_dict, set_state_dict from torch.distributed.checkpoint.stateful import Stateful from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp import ShardingStrategy from torch.distributed.tensor import DTensor from torch.distributed.tensor.experimental import context_parallel from torch.nn.attention import SDPBackend, sdpa_kernel from torch.utils.data import DataLoader, default_collate from torch.utils.data.distributed import DistributedSampler from transformers import AutoModelForCausalLM, AutoTokenizer ignore_sanity_checks = int(os.environ.get("IGNORE_SANITY", 0)) == 1 # torch.use_deterministic_algorithms(True) torch.backends.cudnn.deterministic = True # Set up logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger = logging.getLogger(__name__) # from torch.distributed.tensor.experimental._attention import set_rotate_method # set_rotate_method("alltoall") # rotate shards using all-to-all def main(): tp_size = int(os.environ.get("TP_SIZE", 1)) dp_size = int(os.environ.get("DP_SIZE", 4)) cp_size = int(os.environ.get("CP_SIZE", 1)) # Add CP size configuration sdpa_backend = SDPBackend.FLASH_ATTENTION # For CP # sdpa_backend = SDPBackend.MATH # For CP global_batch_size = 8 # Desired global batch size seq_len = 1024 # Sequence length num_train_steps = 10000 # Number of training steps LR = 1e-5 model_name = "HuggingFaceTB/SmolLM2-1.7B" # model_name = "unsloth/Llama-3.2-1B" CHECKPOINT_DIR = f"checkpoint_tp{tp_size}_dp{dp_size}_cp{cp_size}" # Initialize distributed environment if "RANK" in os.environ and "WORLD_SIZE" in os.environ: dist.init_process_group("nccl") rank = dist.get_rank() world_size = dist.get_world_size() local_rank = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) assert world_size == tp_size * dp_size * cp_size, ( f"World size ({world_size}) must equal TP size ({tp_size}) * DP size ({dp_size}) * CP size ({cp_size})" ) mesh = torch.arange(world_size).reshape(dp_size, tp_size, cp_size) world_mesh = DeviceMesh(device_type="cuda", mesh=mesh, mesh_dim_names=("dp", "tp", "cp")) tp_mesh = world_mesh["tp"] dp_mesh = world_mesh["dp"] cp_mesh = world_mesh["cp"] world_mesh["dp", "cp"]._flatten(mesh_dim_name="dp_cp") logger.info(f"Created DeviceMesh: {world_mesh}") logger.info( f"Distributed setup - Rank: {rank}, World size: {world_size}, Local rank: {local_rank}, DP: {dp_mesh.get_local_rank()}, TP: {tp_mesh.get_local_rank()}, CP: {cp_mesh.get_local_rank()}" ) if dist.get_rank() == 0: wandb.init( project="tp_dp_test", config={ "tp_size": tp_size, "dp_size": dp_size, "cp_size": cp_size, "global_batch_size": global_batch_size, "model_name": model_name, "dataset": "roneneldan/TinyStories-1M", "seq_len": seq_len, "lr": LR, "weight_decay": 0.1, }, name=f"llama_tp{tp_size}_dp{dp_size}_cp{cp_size}" if model_name == "unsloth/Llama-3.2-1B" else f"tp{tp_size}_dp{dp_size}_cp{cp_size}", ) logger.info(f"ignore_sanity_checks is set to: {ignore_sanity_checks}") logger.info("Wandb initialized.") # Log the current file to wandb wandb.save("test_train.py") else: logger.info("Running in non-distributed mode. DeviceMesh not applicable.") rank = 0 world_size = 1 local_rank = 0 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") wandb.init( project="tp_dp_test", config={ "tp_size": 1, "dp_size": 1, "global_batch_size": global_batch_size, "model_name": model_name, "dataset": "roneneldan/TinyStories-1M", "seq_len": seq_len, }, name="llama_tp1_dp1_nondist" if model_name == "unsloth/Llama-3.2-1B" else "tp1_dp1_nondist", ) logger.info("Wandb initialized for non-distributed run.") # Load model and tokenizer logger.info(f"Loading model and tokenizer from {model_name}") tokenizer = AutoTokenizer.from_pretrained(model_name) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token logger.info(f"Set pad_token to eos_token: {tokenizer.pad_token}") model = AutoModelForCausalLM.from_pretrained( model_name, device_mesh=tp_mesh if dist.is_initialized() else None, tp_plan="auto", torch_dtype=torch.bfloat16, ) logger.info(f"Model loaded onto device mesh: {tp_mesh}") if dist.is_initialized(): assert model.config.num_key_value_heads % tp_mesh.size() == 0, ( f"num_key_value_heads={model.config.num_key_value_heads} must be divisible by tp_size={tp_mesh.size()}" ) device = torch.device(f"cuda:{local_rank}") else: model = model.to(device) logger.info(f"Using device: {device} for non-model tensors") use_ddp = False if dist.is_initialized() and dp_mesh.size() > 1: # FSDP1 model = FSDP(model, device_mesh=dp_mesh, sharding_strategy=ShardingStrategy.NO_SHARD) # FSDP2 # for transformer_block in model.model.layers: # fully_shard(transformer_block, mesh=dp_mesh, reshard_after_forward=False) # fully_shard(model.model, mesh=dp_mesh, reshard_after_forward=False) # DDP # replicate(model, device_mesh=dp_mesh, bucket_cap_mb=100) # assert len(list(model.parameters()))>5, "No parameters found in model. Probably DDP/FSDP bug.." # TODO: we should be cautious abt using model.parameters() use_ddp = True model.train() assert len(list(model.parameters())) > 0, "No parameters found in model. Probably DDP bug.." assert len([p for p in model.parameters() if p.requires_grad]) > 0, ( "No gradients found in model. Probably DDP bug.." ) if dist.is_initialized() and not ignore_sanity_checks: # assert model is replicated across all dp for name, param in model.named_parameters(): sanity_check_tensor_sync(param, dp_mesh) # assert model is different across tp (only for sharded params) for name, param in model.named_parameters(): if isinstance(param, DTensor) and param.placements[0].is_shard(): # Only check sharded parameters for non-sync across TP sanity_check_tensor_sync(param, tp_mesh, not_sync=True) elif isinstance(param, DTensor) and param.placements[0].is_replicate(): # Replicated parameters should be the same across TP sanity_check_tensor_sync(param, tp_mesh) # assert model is replicated across cp for name, param in model.named_parameters(): sanity_check_tensor_sync(param, cp_mesh) # Load and preprocess TinyStories dataset logger.info("Loading TinyStories dataset...") raw_dataset = load_dataset("roneneldan/TinyStories", split="train[:1%]") # Use 1% for faster testing def tokenize_function(examples): # Tokenize the text without padding tokenized_batch = tokenizer( examples["text"], padding=False, truncation=True, max_length=seq_len, return_tensors=None ) # Set labels to be the same as input_ids for Causal LM tokenized_batch["labels"] = tokenized_batch["input_ids"].copy() return tokenized_batch tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=["text"]) logger.info(f"Dataset loaded and tokenized. Size: {len(tokenized_dataset)}") # Create packed sequences def create_packed_sequences(examples): # Flatten all sequences all_tokens = [] for input_ids in examples["input_ids"]: all_tokens.extend(input_ids) # Split into sequences of seq_len + 1 (for input + label) num_sequences = len(all_tokens) // (seq_len + 1) packed_input_ids = [] packed_labels = [] for i in range(num_sequences): start_idx = i * (seq_len + 1) end_idx = start_idx + (seq_len + 1) # Get the full sequence full_sequence = all_tokens[start_idx:end_idx] # For input_ids, remove the last token packed_input_ids.append(full_sequence[:-1]) # For labels, remove the first token packed_labels.append(full_sequence[1:]) return {"input_ids": packed_input_ids, "labels": packed_labels} # Apply packing to the dataset packed_dataset = tokenized_dataset.map( create_packed_sequences, batched=True, remove_columns=tokenized_dataset.column_names, batch_size=1000, # Process in batches for efficiency num_proc=60, ) logger.info(f"Dataset packed. New size: {len(packed_dataset)}") # Shuffle the packed dataset packed_dataset = packed_dataset.shuffle(seed=42) logger.info("Packed dataset shuffled") # Calculate local batch size if dist.is_initialized(): assert global_batch_size % dp_mesh.size() == 0, ( f"Global batch size ({global_batch_size}) must be divisible by DP size ({dp_mesh.size()})" ) local_batch_size = global_batch_size // dp_mesh.size() else: local_batch_size = global_batch_size logger.info( f"Global batch size: {global_batch_size}, DP size: {dp_size if dist.is_initialized() else 1}, Local batch size: {local_batch_size}" ) # Simple collate function since sequences are already packed def collate_fn(batch): input_ids = torch.tensor([item["input_ids"] for item in batch], dtype=torch.long) labels = torch.tensor([item["labels"] for item in batch], dtype=torch.long) return {"input_ids": input_ids, "labels": labels} if dist.is_initialized(): sampler = DistributedSampler( packed_dataset, num_replicas=dp_mesh.size(), rank=dp_mesh.get_local_rank(), shuffle=False ) else: sampler = None dataloader = DataLoader( packed_dataset, batch_size=local_batch_size, sampler=sampler, shuffle=False, collate_fn=collate_fn, ) logger.info(f"DataLoader created. Distributed: {dist.is_initialized()}") optimizer = optim.AdamW(model.parameters(), lr=LR, weight_decay=0.1) # Training loop logger.info(f"Starting training for {num_train_steps} steps...") model.train() step = 0 while step < num_train_steps: for batch in dataloader: if step >= num_train_steps: break # Exit loop if max steps reached # Move batch to appropriate device batch = {k: v.to(device) for k, v in batch.items()} # Sanity checks for batch distribution (only if distributed) if dist.is_initialized() and not ignore_sanity_checks: # check batch is same across all tp sanity_check_tensor_sync(batch["input_ids"], tp_mesh) # check batch is different across dp sanity_check_tensor_sync(batch["input_ids"], dp_mesh, not_sync=True) optimizer.zero_grad() # Add position_ids to batch before CP sharding batch_size = batch["input_ids"].shape[0] position_ids = torch.arange(0, seq_len, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(batch_size, -1) batch["position_ids"] = position_ids from torch.distributed.tensor.experimental._attention import _cp_options _cp_options.enable_load_balance = False with sdpa_kernel(sdpa_backend): # TODO: ideally move this to attention implementation cp_context = ( nullcontext() if cp_mesh.size() == 1 else context_parallel( cp_mesh, buffers=[ batch["input_ids"], batch["labels"], batch["position_ids"], ], # TODO: need to add attention mask buffer_seq_dims=[1, 1, 1], ) ) with cp_context: # Pop labels from batch before model forward pass labels = batch.pop("labels") outputs = model(**batch) # [mbs, seq_len/cp] loss = outputs.loss logits = outputs.logits # Compute loss with shifted labels loss = model.loss_function( logits=logits, labels=None, shift_labels=labels, vocab_size=model.config.vocab_size ) # Sanity checks for logits if dist.is_initialized() and not ignore_sanity_checks: # sanity_check_tensor_sync(logits, tp_mesh) # TODO: only true without sequence parallel sanity_check_tensor_sync(logits, dp_mesh, not_sync=True) sanity_check_tensor_sync(logits, cp_mesh, not_sync=True) loss.backward() # all reduce grads across dp_cp if applicable all_reduce_grads(model, world_mesh, use_ddp=use_ddp) # Sanity checks for gradients (only if distributed) if dist.is_initialized() and not ignore_sanity_checks: # check grads are not same across all tp (for sharded grads) for name, param in model.named_parameters(): if param.grad is not None and isinstance(param.grad, DTensor): if param.grad.placements[0].is_shard(): sanity_check_tensor_sync(param.grad, tp_mesh, not_sync=True) elif param.grad.placements[0].is_replicate(): sanity_check_tensor_sync(param.grad, tp_mesh) # check grads are same across dp for name, param in model.named_parameters(): if param.grad is not None and dp_mesh.size() > 1: sanity_check_tensor_sync(param.grad, dp_mesh) # check grads are same across cp for name, param in model.named_parameters(): if param.grad is not None and cp_mesh.size() > 1: sanity_check_tensor_sync(param.grad, cp_mesh) # Calculate gradient norm and clip gradients if hasattr(model, "clip_grad_norm_"): # when using FSDP or DDP, model.parameters() doesn't work gradnorm = model.clip_grad_norm_(max_norm=1.0, norm_type=2.0) else: assert len(list(model.parameters())) > 2, "No parameters found in model. Probably DDP bug.." assert len([p for p in model.parameters() if p.requires_grad]) > 2, ( "No gradients found in model. Probably DDP bug.." ) assert len([p for p in model.parameters() if p.grad is not None]) > 2, ( "No gradients found in model. Probably DDP bug.." ) # only works with FSDP's NO_SHARD otherwise we should use FSDP's clip_grad_norm_ gradnorm = clip_grad_norm_(model.parameters(), max_norm=1.0, norm_type=2.0, foreach=True) optimizer.step() # Sanity checks for updated model parameters (only if distributed) if dist.is_initialized() and not ignore_sanity_checks: # check updated model is different across all tp (for sharded params) for name, param in model.named_parameters(): if isinstance(param, DTensor): if param.placements[0].is_shard(): sanity_check_tensor_sync(param, tp_mesh, not_sync=True) elif param.placements[0].is_replicate(): sanity_check_tensor_sync(param, tp_mesh) # check updated model is same across dp for name, param in model.named_parameters(): sanity_check_tensor_sync(param, dp_mesh) # check updated model is same across cp for name, param in model.named_parameters(): sanity_check_tensor_sync(param, cp_mesh) # allreduce loss across cp_dp before logging if dist.is_initialized() and (cp_mesh.size() > 1 or dp_mesh.size() > 1): dist.all_reduce(loss, group=world_mesh["dp_cp"].get_group(), op=dist.ReduceOp.AVG) current_loss = loss.item() # Log loss and gradnorm to wandb (only on rank 0 of dp group) if not dist.is_initialized() or dist.get_rank() == 0: logger.info( f"Step: {step} | GBS: {global_batch_size} | DP: {dp_mesh.size()} | TP: {tp_mesh.size()} | CP: {cp_mesh.size()} | Loss: {current_loss} | Gradnorm: {gradnorm} | lr: {LR}" ) wandb.log( { "train/loss": current_loss, "train/gradnorm": gradnorm, "step": step, "lr": LR, "GBS": global_batch_size, } ) step += 1 # Increment step count logger.info("Training loop finished.") # Save model using DCP (only if distributed) if dist.is_initialized(): state_dict = {"app": AppState(model, optimizer)} dcp.save( state_dict=state_dict, checkpoint_id=CHECKPOINT_DIR, ) logger.info(f"Saved checkpoint to {CHECKPOINT_DIR}") else: # Fallback to regular save for non-distributed case save_dir = "test_model_nondist" model.save_pretrained(save_dir, safe_serialization=False) tokenizer.save_pretrained(save_dir) # Save tokenizer too logger.info(f"Saved model to {save_dir}") # Example of loading the checkpoint (only if distributed) if dist.is_initialized(): # Create a new model instance logger.info("Creating new model instance for verification") new_model = AutoModelForCausalLM.from_pretrained( model_name, device_mesh=tp_mesh, torch_dtype=torch.bfloat16, # Use same dtype ) new_optimizer = optim.AdamW(new_model.parameters(), lr=LR) # Load checkpoint into new model state_dict = {"app": AppState(new_model, new_optimizer)} dcp.load( state_dict=state_dict, checkpoint_id=CHECKPOINT_DIR, ) logger.info("Loaded checkpoint into new model") # Verify model weights match logger.info("Verifying model weights match...") for (name1, param1), (name2, param2) in zip(model.named_parameters(), new_model.named_parameters()): torch.testing.assert_close( param1.to_local(), param2.to_local(), rtol=1e-3, atol=1e-3, msg=f"Weights mismatch in {name1} vs {name2}", ) # Verify optimizer states match logger.info("Verifying optimizer states match...") for name1, state1 in optimizer.state_dict().items(): state2 = new_optimizer.state_dict()[name1] if name1 == "state": # Compare state dictionaries for each parameter for param_id, param_state1 in state1.items(): param_state2 = state2[param_id] # Compare each state component (step, exp_avg, exp_avg_sq) for key, value1 in param_state1.items(): value2 = param_state2[key] if isinstance(value1, DTensor): # Convert DTensors to local tensors for comparison torch.testing.assert_close( value1.to_local(), value2.to_local(), rtol=1e-5, atol=1e-5, msg=f"Optimizer state mismatch in state[{param_id}][{key}]", ) else: torch.testing.assert_close( value1, value2, rtol=1e-5, atol=1e-5, msg=f"Optimizer state mismatch in state[{param_id}][{key}]", ) elif name1 == "param_groups": # Compare param_groups (excluding the actual params list) for i, (group1, group2) in enumerate(zip(state1, state2)): for key in group1: if key != "params": # Skip comparing the params list assert group1[key] == group2[key], f"Param group mismatch in param_groups[{i}][{key}]" # Run a forward pass with both models to verify outputs match logger.info("Running forward pass verification...") with torch.no_grad(): # Use the last batch for verification batch = {k: v.to(device) for k, v in batch.items()} # Ensure batch is on correct device original_outputs = model(**batch) new_outputs = new_model(**batch) torch.testing.assert_close( original_outputs.logits.to_local(), new_outputs.logits.to_local(), rtol=1e-3, atol=1e-3, msg="Model outputs do not match!", ) # Increased tolerance slightly for bf16 # Clean up distributed environment and finish wandb run if dist.is_initialized(): dist.destroy_process_group() logger.info("Cleaned up distributed process group") # Finish wandb run on rank 0 if dist.get_rank() == 0: wandb.finish() logger.info("Wandb run finished.") else: wandb.finish() logger.info("Wandb run finished.") def all_reduce_grads(model, world_mesh, use_ddp): """All reduce gradients across dp_cp if applicable.""" cp_mesh = world_mesh["cp"] if use_ddp: # DDP takes care of syncing grads mesh = cp_mesh else: mesh = world_mesh["dp", "cp"]._flatten(mesh_dim_name="dp_cp") if dist.is_initialized() and mesh.size() > 1: for name, param in model.named_parameters(): if param.grad is not None: # Workaround for cross-mesh communication limitation with DTensor gradients if isinstance(param.grad, DTensor): local_grad = param.grad.to_local() # Ensure grad requires grad for inplace modification checks (might not be needed) # local_grad = local_grad.detach().requires_grad_(True) torch.distributed.all_reduce(local_grad, op=torch.distributed.ReduceOp.SUM, group=mesh.get_group()) local_grad = local_grad / mesh.size() # Assign averaged grad back - need careful handling if DTensor structure is complex # This simple assignment might work if the grad structure matches param structure param.grad = DTensor.from_local( local_grad, device_mesh=param.grad.device_mesh, placements=param.grad.placements ) else: # Handle regular tensors if any exist (e.g. buffers not converted to DTensor) torch.distributed.all_reduce(param.grad, op=torch.distributed.ReduceOp.AVG, group=mesh.get_group()) class ContextParallelCollator: """Collator for context parallel training that splits sequences into chunks.""" def __init__(self, cp_mesh: Optional[DeviceMesh] = None): self.cp_mesh = cp_mesh def __call__(self, batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: batch = default_collate(batch) if self.cp_mesh is not None and self.cp_mesh.size() > 1: # Get sequence length from the input batch seq_len = batch["input_ids"].shape[1] assert seq_len % self.cp_mesh.size() == 0, ( f"Sequence length {seq_len} must be divisible by CP size {self.cp_mesh.size()}" ) chunk_size = seq_len // self.cp_mesh.size() cp_rank = self.cp_mesh.get_local_rank() start_idx = cp_rank * chunk_size end_idx = start_idx + chunk_size # Keep only the local chunk of the sequence batch["input_ids"] = batch["input_ids"][:, start_idx:end_idx] batch["attention_mask"] = batch["attention_mask"][:, start_idx:end_idx] batch["labels"] = batch["labels"][:, start_idx:end_idx] return batch class AppState(Stateful): """Wrapper for checkpointing the Application State including model and optimizer.""" def __init__(self, model, optimizer=None): self.model = model self.optimizer = optimizer def state_dict(self): model_state_dict, optimizer_state_dict = get_state_dict(self.model, self.optimizer) return {"model": model_state_dict, "optim": optimizer_state_dict} def load_state_dict(self, state_dict): set_state_dict( self.model, self.optimizer, model_state_dict=state_dict["model"], optim_state_dict=state_dict["optim"] ) def sanity_check_tensor_sync( tensor: torch.Tensor, mesh: DeviceMesh, rtol: float = 1e-4, atol: float = 1e-4, not_sync: bool = False ) -> None: """ Verify that a tensor is synchronized (or not synchronized) across all processes in the mesh's process group. Handles both regular tensors and DTensors. Args: tensor (torch.Tensor): The tensor to check for synchronization (can be DTensor) mesh (DeviceMesh): The device mesh containing the process group rtol (float): Relative tolerance for comparison atol (float): Absolute tolerance for comparison not_sync (bool): If True, asserts that tensors are NOT synchronized. If False, asserts they are synchronized. """ if not dist.is_initialized() or mesh.size() == 1: return # No need to check in non-distributed mode # Get the process group from the mesh pg = mesh.get_group() # Convert DTensor to local tensor if needed if hasattr(tensor, "to_local"): local_tensor = tensor.to_local() else: local_tensor = tensor # Gather tensors from all processes world_size = dist.get_world_size(pg) gathered_tensors = [torch.empty_like(local_tensor) for _ in range(world_size)] dist.all_gather(gathered_tensors, local_tensor, group=pg) # Compare each tensor with the first one for i in range(1, world_size): try: torch.testing.assert_close(gathered_tensors[0], gathered_tensors[i], rtol=rtol, atol=atol) except AssertionError as e: if not_sync: continue # # Add detailed debugging for logit synchronization issues # print(f"\nLogit synchronization error between rank 0 and rank {i}:") # print(f"Tensor shape: {gathered_tensors[0].shape}") # print(f"Number of mismatched elements: {(gathered_tensors[0] != gathered_tensors[i]).sum()}") # print(f"Percentage of mismatched elements: {((gathered_tensors[0] != gathered_tensors[i]).sum() / gathered_tensors[0].numel() * 100):.2f}%") # # Find the first few mismatches # mismatches = torch.nonzero(gathered_tensors[0] != gathered_tensors[i]) # print("\nFirst few mismatches:") # for idx in mismatches[:5]: # idx = tuple(idx.tolist()) # print(f"Index {idx}:") # print(f"Rank 0 value: {gathered_tensors[0][idx]}") # print(f"Rank {i} value: {gathered_tensors[i][idx]}") # print(f"Absolute difference: {abs(gathered_tensors[0][idx] - gathered_tensors[i][idx])}") # print(f"Relative difference: {abs(gathered_tensors[0][idx] - gathered_tensors[i][idx]) / max(abs(gathered_tensors[0][idx]), abs(gathered_tensors[i][idx]))}") # # Check if differences are systematic (e.g., all positive or negative) # diff = gathered_tensors[0] - gathered_tensors[i] # print(f"\nDifference statistics:") # print(f"Mean difference: {diff.mean()}") # print(f"Std difference: {diff.std()}") # print(f"Max positive difference: {diff.max()}") # print(f"Max negative difference: {diff.min()}") raise e def clip_grad_norm_( parameters: Iterable[torch.Tensor], max_norm: float, norm_type: float = 2.0, error_if_nonfinite: bool = False, foreach: bool | None = None, ) -> torch.Tensor: """ Clip the gradient norm of an iterable of parameters. """ # Filter out parameters with no gradients parameters = [p for p in parameters if p.grad is not None] assert len(parameters) > 0, "No parameters with gradients found" # Calculate total norm if norm_type == float("inf"): total_norm = max(p.grad.detach().abs().max() for p in parameters) else: total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type) for p in parameters]), norm_type) # Convert DTensor to local tensor if needed if isinstance(total_norm, DTensor): total_norm = total_norm.full_tensor() # Clip gradients clip_coef = max_norm / (total_norm + 1e-6) if clip_coef < 1: for p in parameters: p.grad.detach().mul_(clip_coef) return total_norm def check_params_sync(model_params, original_params): """ Check if original_params are being updated in sync with model parameters. Args: model_params: Iterator of model parameters after update original_params: List of original parameters before DDP wrapping """ for mp, op in zip(model_params, original_params): if isinstance(mp, DTensor): mp = mp.to_local() if isinstance(op, DTensor): op = op.to_local() if not torch.allclose(mp.data, op.data, rtol=0, atol=0): raise RuntimeError(f"Parameters out of sync: model param {mp.data} != original param {op.data}") return True def get_parameters(model: nn.Module) -> Iterable[torch.Tensor]: """ Get all parameters from a model by iterating over its modules. This is an alternative to model.parameters() that works with DTensor models. Args: model (nn.Module): The model to get parameters from Returns: Iterable[torch.Tensor]: An iterator over all parameters in the model """ for name, module in model._modules.items(): # Look for parameters in module attributes for attr_name, attr in module.__dict__.items(): if isinstance(attr, torch.Tensor) and attr.requires_grad: yield attr # Recursively get parameters from submodules for param in get_parameters(module): yield param def update_model_parameters(model: nn.Module) -> None: """ Update model._parameters using named_modules() to ensure all parameters are properly tracked. Args: model (nn.Module): The model to update parameters for """ # Clear existing parameters model._parameters = {} # Add parameters from named_modules for name, module in model.named_modules(): # Skip the root module itself if name == "": continue # Get the parameter name by removing 'module.' prefix if it exists param_name = name.replace("module.", "") # Add weight and bias parameters if they exist if hasattr(module, "weight") and module.weight is not None: model._parameters[f"{param_name}.weight"] = module.weight if hasattr(module, "bias") and module.bias is not None: model._parameters[f"{param_name}.bias"] = module.bias if __name__ == "__main__": main()