# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from examples/modular-transformers/modular_new_task_model.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_new_task_model.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 from dataclasses import dataclass from typing import ClassVar, Optional, Union import torch from torch import nn from ...cache_utils import Cache, HybridCache, StaticCache from ...generation import GenerationMixin from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import BaseModelOutputWithPast from ...modeling_utils import PreTrainedModel from ...processing_utils import Unpack from ...utils import ModelOutput, auto_docstring, can_return_tuple, is_torchdynamo_compiling from ..auto import AutoModel from .configuration_new_task_model import NewTaskModelConfig @dataclass class NewTaskModelModelOutputWithPast(BaseModelOutputWithPast): """ Base class for NewTaskModel outputs, with hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ image_hidden_states: Optional[torch.FloatTensor] = None @dataclass class NewTaskModelCausalLMOutputWithPast(ModelOutput): """ Base class for NewTaskModel causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder after projecting last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None hidden_states: Optional[tuple[torch.FloatTensor]] = None attentions: Optional[tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None class NewTaskModelMultiModalProjector(nn.Module): def __init__(self, config: NewTaskModelConfig): super().__init__() self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True) def forward(self, image_features): hidden_states = self.linear(image_features) return hidden_states @auto_docstring class NewTaskModelPreTrainedModel(PreTrainedModel): config_class = NewTaskModelConfig base_model_prefix = "" supports_gradient_checkpointing = True _no_split_modules = ["NewTaskModelMultiModalProjector"] _skip_keys_device_placement = "past_key_values" _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_attention_backend = True def _init_weights(self, module): # important: this ported version of NewTaskModelisn't meant for training from scratch - only # inference and fine-tuning std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range) if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() @auto_docstring( custom_intro=""" The Base NewTaskModel model which consists of a vision backbone and a language model withou language modeling head., """ ) class NewTaskModelModel(NewTaskModelPreTrainedModel): _checkpoint_conversion_mapping = {"language_model.model": "language_model"} def __init__(self, config: NewTaskModelConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config=config.vision_config) self.multi_modal_projector = NewTaskModelMultiModalProjector(config) self.vocab_size = config.text_config.vocab_size language_model = AutoModel.from_config(config=config.text_config) self.language_model = language_model self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def _update_causal_mask( self, attention_mask, token_type_ids=None, past_key_values=None, cache_position=None, input_tensor=None, is_training: Optional[bool] = None, ): if self.config.text_config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None is_training = is_training if is_training is not None else self.training using_static_cache = isinstance(past_key_values, StaticCache) min_dtype = torch.finfo(self.dtype).min if input_tensor is None: input_tensor = attention_mask inputs_lead_dim, sequence_length = input_tensor.shape[:2] if using_static_cache: target_length = past_key_values.get_max_cache_shape() elif isinstance(past_key_values, HybridCache): target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[0] + sequence_length + 1 ) if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. return attention_mask causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device ) # Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below if sequence_length != 1: if is_training: causal_mask = torch.triu(causal_mask, diagonal=1) else: causal_mask[:, :sequence_length] = 0.0 causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] # First unmask prefix tokens during training if is_training: if token_type_ids is None: raise ValueError("Token type ids must be provided during training") causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0 ) # Then apply padding mask (will mask pad tokens) padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask def get_image_features(self, pixel_values: torch.FloatTensor): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) The tensors corresponding to the input images. Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ image_outputs = self.vision_tower(pixel_values) selected_image_feature = image_outputs.last_hidden_state image_features = self.multi_modal_projector(selected_image_feature) image_features = image_features / (self.config.text_config.hidden_size**0.5) return image_features @can_return_tuple @auto_docstring def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None, token_type_ids: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Union[tuple, NewTaskModelModelOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, NewTaskModelForConditionalGeneration >>> model = NewTaskModelForConditionalGeneration.from_pretrained("google/new_task_model2-3b-mix-224") >>> processor = AutoProcessor.from_pretrained("google/new_task_model2-3b-mix-224") >>> prompt = "Where is the cat standing?" >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs,) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Where is the cat standing?\nsnow" ```""" if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict is_training = token_type_ids is not None and labels is not None # Replace image id woth PAD if the image token if OOV, to avoid index-errors if input_ids is not None and self.config.image_token_id >= self.vocab_size: special_image_mask = input_ids == self.config.image_token_id llm_input_ids = input_ids.clone() llm_input_ids[special_image_mask] = 0 else: llm_input_ids = input_ids if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(llm_input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) + 1 # NewTaskModel positions are 1-indexed # Merge text and images if pixel_values is not None: image_features = self.get_image_features(pixel_values) if input_ids is None: special_image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) else: special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1) special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel(): image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0] raise ValueError( f"Number of images does not match number of special image tokens in the input text. " f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} " "tokens from image embeddings." ) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) causal_mask = self._update_causal_mask( attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training ) outputs = self.language_model( attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, cache_position=cache_position, **kwargs, ) return NewTaskModelModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) @auto_docstring( custom_intro=""" The Base NewTaskModel model which consists of a vision backbone and a language model without language modeling head., """ ) class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin): _checkpoint_conversion_mapping = { "^language_model.model": "model.language_model", "^vision_tower": "model.vision_tower", "^multi_modal_projector": "model.multi_modal_projector", "^language_model.lm_head": "lm_head", } _tied_weights_keys = ["lm_head.weight"] main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related def __init__(self, config): super().__init__(config) self.model = NewTaskModelModel(config) self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) self.embedding_dim = self.config.embedding_dim self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim) if self.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys] self.post_init() def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, value): self.model.set_input_embeddings(value) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model # Make modules available throught conditional class for BC @property def language_model(self): return self.model.language_model @property def vision_tower(self): return self.model.vision_tower @property def multi_modal_projector(self): return self.model.multi_modal_projector @can_return_tuple @auto_docstring def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None, token_type_ids: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, num_logits_to_keep: int = 0, ) -> Union[tuple, NewTaskModelCausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, NewTaskModelForNewTask >>> model = NewTaskModelForNewTask.from_pretrained("google/new_task_model2-3b-mix-224") >>> processor = AutoProcessor.from_pretrained("google/new_task_model2-3b-mix-224") >>> prompt = "Where is the cat standing?" >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs,) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Where is the cat standing?\nsnow" ``` Returns: """ vlm_outputs = super().forward( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, token_type_ids=token_type_ids, cache_position=cache_position, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=True, return_dict=True, num_logits_to_keep=num_logits_to_keep, ) last_hidden_states = vlm_outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size) proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim) # L2 normalization embeddings = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim) if attention_mask is not None: embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim) return (embeddings,) + vlm_outputs def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, cache_position=None, position_ids=None, pixel_values=None, attention_mask=None, token_type_ids=None, use_cache=True, logits_to_keep=None, labels=None, **kwargs, ): # Overwritten -- custom `position_ids` and `pixel_values` handling model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, cache_position=cache_position, use_cache=use_cache, logits_to_keep=logits_to_keep, token_type_ids=token_type_ids, **kwargs, ) # position_ids in NewTaskModel are 1-indexed if model_inputs.get("position_ids") is not None: model_inputs["position_ids"] += 1 # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always if cache_position[0] == 0: model_inputs["pixel_values"] = pixel_values is_training = token_type_ids is not None and labels is not None if cache_position[0] == 0 and isinstance(past_key_values, HybridCache): input_tensor = inputs_embeds if inputs_embeds is not None else input_ids causal_mask = self.model._update_causal_mask( attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training ) model_inputs["attention_mask"] = causal_mask return model_inputs @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask def resize_token_embeddings( self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None, mean_resizing=True ) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing) # Update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings self.config.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds