# GLM
## Overview
The GLM Model was proposed
in [ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools](https://huggingface.co/papers/2406.12793)
by GLM Team, THUDM & ZhipuAI.
The abstract from the paper is the following:
*We introduce ChatGLM, an evolving family of large language models that we have been developing over time. This report
primarily focuses on the GLM-4 language series, which includes GLM-4, GLM-4-Air, and GLM-4-9B. They represent our most
capable models that are trained with all the insights and lessons gained from the preceding three generations of
ChatGLM. To date, the GLM-4 models are pre-trained on ten trillions of tokens mostly in Chinese and English, along with
a small set of corpus from 24 languages, and aligned primarily for Chinese and English usage. The high-quality alignment
is achieved via a multi-stage post-training process, which involves supervised fine-tuning and learning from human
feedback. Evaluations show that GLM-4 1) closely rivals or outperforms GPT-4 in terms of general metrics such as MMLU,
GSM8K, MATH, BBH, GPQA, and HumanEval, 2) gets close to GPT-4-Turbo in instruction following as measured by IFEval, 3)
matches GPT-4 Turbo (128K) and Claude 3 for long context tasks, and 4) outperforms GPT-4 in Chinese alignments as
measured by AlignBench. The GLM-4 All Tools model is further aligned to understand user intent and autonomously decide
when and which tool(s) to use—including web browser, Python interpreter, text-to-image model, and user-defined
functions—to effectively complete complex tasks. In practical applications, it matches and even surpasses GPT-4 All
Tools in tasks like accessing online information via web browsing and solving math problems using Python interpreter.
Over the course, we have open-sourced a series of models, including ChatGLM-6B (three generations), GLM-4-9B (128K, 1M),
GLM-4V-9B, WebGLM, and CodeGeeX, attracting over 10 million downloads on Hugging face in the year 2023 alone.*
Tips:
- This model was contributed by [THUDM](https://huggingface.co/THUDM). The most recent code can be
found [here](https://github.com/thudm/GLM-4).
## Usage tips
`GLM-4` can be found on the [Huggingface Hub](https://huggingface.co/collections/THUDM/glm-4-665fcf188c414b03c2f7e3b7)
In the following, we demonstrate how to use `glm-4-9b-chat` for the inference. Note that we have used the ChatML format for dialog, in this demo we show how to leverage `apply_chat_template` for this purpose.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("THUDM/glm-4-9b-chat", device_map="auto", trust_remote_code=True)
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat")
>>> prompt = "Give me a short introduction to large language model."
>>> messages = [{"role": "user", "content": prompt}]
>>> text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> model_inputs = tokenizer([text], return_tensors="pt").to(device)
>>> generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True)
>>> generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
>>> response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## GlmConfig
[[autodoc]] GlmConfig
## GlmModel
[[autodoc]] GlmModel
- forward
## GlmForCausalLM
[[autodoc]] GlmForCausalLM
- forward
## GlmForSequenceClassification
[[autodoc]] GlmForSequenceClassification
- forward
## GlmForTokenClassification
[[autodoc]] GlmForTokenClassification
- forward