PyTorch FlashAttention SDPA
# BioGPT [BioGPT](https://huggingface.co/papers/2210.10341) is a generative Transformer model based on [GPT-2](./gpt2) and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks. You can find all the original BioGPT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=biogpt) organization. > [!TIP] > Click on the BioGPT models in the right sidebar for more examples of how to apply BioGPT to different language tasks. The example below demonstrates how to generate biomedical text with [`Pipeline`], [`AutoModel`], and also from the command line. ```py import torch from transformers import pipeline generator = pipeline( task="text-generation", model="microsoft/biogpt", torch_dtype=torch.float16, device=0, ) result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"] print(result) ``` ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt") model = AutoModelForCausalLM.from_pretrained( "microsoft/biogpt", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa" ) input_text = "Ibuprofen is best used for" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) with torch.no_grad(): generated_ids = model.generate(**inputs, max_length=50) output = tokenizer.decode(generated_ids[0], skip_special_tokens=True) print(output) ``` ```bash echo -e "Ibuprofen is best used for" | transformers-cli run --task text-generation --model microsoft/biogpt --device 0 ``` Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends. The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bit precision. ```py import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True ) tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large") model = AutoModelForCausalLM.from_pretrained( "microsoft/BioGPT-Large", quantization_config=bnb_config, torch_dtype=torch.bfloat16, device_map="auto" ) input_text = "Ibuprofen is best used for" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) with torch.no_grad(): generated_ids = model.generate(**inputs, max_length=50) output = tokenizer.decode(generated_ids[0], skip_special_tokens=True) print(output) ``` ## Notes - Pad inputs on the right because BioGPT uses absolute position embeddings. - BioGPT can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers/main/en/model_doc/biogpt#transformers.BioGptModel.forward.past_key_values) parameter in [`BioGPTModel.forward`]. - The `head_mask` argument is ignored when using an attention implementation other than "eager". If you want to use `head_mask`, make sure `attn_implementation="eager"`). ```py from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "microsoft/biogpt", attn_implementation="eager" ) ## BioGptConfig [[autodoc]] BioGptConfig ## BioGptTokenizer [[autodoc]] BioGptTokenizer - save_vocabulary ## BioGptModel [[autodoc]] BioGptModel - forward ## BioGptForCausalLM [[autodoc]] BioGptForCausalLM - forward ## BioGptForTokenClassification [[autodoc]] BioGptForTokenClassification - forward ## BioGptForSequenceClassification [[autodoc]] BioGptForSequenceClassification - forward