# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import timeout_decorator # noqa from parameterized import parameterized from transformers import FSMTConfig, is_torch_available from transformers.file_utils import cached_property from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_generation_utils import GenerationTesterMixin from .test_modeling_common import ModelTesterMixin, ids_tensor if is_torch_available(): import torch from torch import nn from transformers import FSMTForConditionalGeneration, FSMTModel, FSMTTokenizer from transformers.models.fsmt.modeling_fsmt import ( SinusoidalPositionalEmbedding, _prepare_fsmt_decoder_inputs, invert_mask, shift_tokens_right, ) from transformers.pipelines import TranslationPipeline class FSMTModelTester: def __init__( self, parent, ): self.parent = parent self.src_vocab_size = 99 self.tgt_vocab_size = 99 self.langs = ["ru", "en"] self.batch_size = 13 self.seq_length = 7 self.is_training = False self.use_labels = False self.hidden_size = 16 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 4 self.hidden_act = "relu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 20 self.bos_token_id = 0 self.pad_token_id = 1 self.eos_token_id = 2 torch.manual_seed(0) # hack needed for modeling_common tests - despite not really having this attribute in this model self.vocab_size = self.src_vocab_size def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.src_vocab_size).clamp( 3, ) input_ids[:, -1] = 2 # Eos Token config = self.get_config() inputs_dict = prepare_fsmt_inputs_dict(config, input_ids) return config, inputs_dict def get_config(self): return FSMTConfig( vocab_size=self.src_vocab_size, # hack needed for common tests src_vocab_size=self.src_vocab_size, tgt_vocab_size=self.tgt_vocab_size, langs=self.langs, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"] inputs_dict["decoder_attention_mask"] = inputs_dict["attention_mask"] inputs_dict["use_cache"] = False return config, inputs_dict def prepare_fsmt_inputs_dict( config, input_ids, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_torch class FSMTModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (FSMTModel, FSMTForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (FSMTForConditionalGeneration,) if is_torch_available() else () is_encoder_decoder = True test_pruning = False test_missing_keys = False def setUp(self): self.model_tester = FSMTModelTester(self) self.langs = ["en", "ru"] config = { "langs": self.langs, "src_vocab_size": 10, "tgt_vocab_size": 20, } # XXX: hack to appease to all other models requiring `vocab_size` config["vocab_size"] = 99 # no such thing in FSMT self.config_tester = ConfigTester(self, config_class=FSMTConfig, **config) def test_config(self): self.config_tester.run_common_tests() # XXX: override test_model_common_attributes / different Embedding type def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding)) model.set_input_embeddings(nn.Embedding(10, 10)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.modules.sparse.Embedding)) def test_initialization_more(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() model = FSMTModel(config) model.to(torch_device) model.eval() # test init # self.assertTrue((model.encoder.embed_tokens.weight == model.shared.weight).all().item()) def _check_var(module): """Check that we initialized various parameters from N(0, config.init_std).""" self.assertAlmostEqual(torch.std(module.weight).item(), config.init_std, 2) _check_var(model.encoder.embed_tokens) _check_var(model.encoder.layers[0].self_attn.k_proj) _check_var(model.encoder.layers[0].fc1) # XXX: different std for fairseq version of SinusoidalPositionalEmbedding # self.assertAlmostEqual(torch.std(model.encoder.embed_positions.weights).item(), config.init_std, 2) def test_advanced_inputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() config.use_cache = False inputs_dict["input_ids"][:, -2:] = config.pad_token_id decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs( config, inputs_dict["input_ids"] ) model = FSMTModel(config).to(torch_device).eval() decoder_features_with_created_mask = model(**inputs_dict)[0] decoder_features_with_passed_mask = model( decoder_attention_mask=invert_mask(decoder_attn_mask), decoder_input_ids=decoder_input_ids, **inputs_dict )[0] _assert_tensors_equal(decoder_features_with_passed_mask, decoder_features_with_created_mask) useless_mask = torch.zeros_like(decoder_attn_mask) decoder_features = model(decoder_attention_mask=useless_mask, **inputs_dict)[0] self.assertTrue(isinstance(decoder_features, torch.Tensor)) # no hidden states or attentions self.assertEqual( decoder_features.size(), (self.model_tester.batch_size, self.model_tester.seq_length, config.tgt_vocab_size), ) if decoder_attn_mask.min().item() < -1e3: # some tokens were masked self.assertFalse((decoder_features_with_created_mask == decoder_features).all().item()) # Test different encoder attention masks decoder_features_with_long_encoder_mask = model( inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"].long() )[0] _assert_tensors_equal(decoder_features_with_long_encoder_mask, decoder_features_with_created_mask) def test_save_load_missing_keys(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) @unittest.skip("Test has a segmentation fault on torch 1.8.0") def test_export_to_onnx(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() model = FSMTModel(config).to(torch_device) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( model, (inputs_dict["input_ids"], inputs_dict["attention_mask"]), f"{tmpdirname}/fsmt_test.onnx", export_params=True, opset_version=12, input_names=["input_ids", "attention_mask"], ) @unittest.skip("can't be implemented for FSMT due to dual vocab.") def test_resize_tokens_embeddings(self): pass @unittest.skip("Passing inputs_embeds not implemented for FSMT.") def test_inputs_embeds(self): pass @unittest.skip("model weights aren't tied in FSMT.") def test_tie_model_weights(self): pass @unittest.skip("TODO: Decoder embeddings cannot be resized at the moment") def test_resize_embeddings_untied(self): pass @require_torch class FSMTHeadTests(unittest.TestCase): src_vocab_size = 99 tgt_vocab_size = 99 langs = ["ru", "en"] def _get_config(self): return FSMTConfig( src_vocab_size=self.src_vocab_size, tgt_vocab_size=self.tgt_vocab_size, langs=self.langs, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) def _get_config_and_data(self): input_ids = torch.tensor( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=torch.long, device=torch_device, ) batch_size = input_ids.shape[0] config = self._get_config() return config, input_ids, batch_size def test_generate_beam_search(self): input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], dtype=torch.long, device=torch_device) config = self._get_config() lm_model = FSMTForConditionalGeneration(config).to(torch_device) lm_model.eval() max_length = 5 new_input_ids = lm_model.generate( input_ids.clone(), do_sample=True, num_return_sequences=1, num_beams=2, no_repeat_ngram_size=3, max_length=max_length, ) self.assertEqual(new_input_ids.shape, (input_ids.shape[0], max_length)) def test_shift_tokens_right(self): input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long) shifted = shift_tokens_right(input_ids, 1) n_pad_before = input_ids.eq(1).float().sum() n_pad_after = shifted.eq(1).float().sum() self.assertEqual(shifted.shape, input_ids.shape) self.assertEqual(n_pad_after, n_pad_before - 1) self.assertTrue(torch.eq(shifted[:, 0], 2).all()) def test_generate_fp16(self): config, input_ids, batch_size = self._get_config_and_data() attention_mask = input_ids.ne(1).to(torch_device) model = FSMTForConditionalGeneration(config).eval().to(torch_device) if torch_device == "cuda": model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_dummy_inputs(self): config, *_ = self._get_config_and_data() model = FSMTForConditionalGeneration(config).eval().to(torch_device) model(**model.dummy_inputs) def test_prepare_fsmt_decoder_inputs(self): config, *_ = self._get_config_and_data() input_ids = _long_tensor(([4, 4, 2])) decoder_input_ids = _long_tensor([[26388, 2, config.pad_token_id]]) ignore = float("-inf") decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs( config, input_ids, decoder_input_ids ) expected_causal_mask = torch.tensor( [[0, ignore, ignore], [0, 0, ignore], [0, 0, 0]] # never attend to the final token, because its pad ).to(input_ids.device) self.assertEqual(decoder_attn_mask.size(), decoder_input_ids.size()) self.assertTrue(torch.eq(expected_causal_mask, causal_mask).all()) def _assert_tensors_equal(a, b, atol=1e-12, prefix=""): """If tensors not close, or a and b arent both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: if len(prefix) > 0: prefix = f"{prefix}: " raise AssertionError(f"{prefix}{a} != {b}") def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) TOLERANCE = 1e-4 pairs = [ ["en-ru"], ["ru-en"], ["en-de"], ["de-en"], ] @require_torch @require_sentencepiece @require_tokenizers class FSMTModelIntegrationTests(unittest.TestCase): tokenizers_cache = {} models_cache = {} default_mname = "facebook/wmt19-en-ru" @cached_property def default_tokenizer(self): return self.get_tokenizer(self.default_mname) @cached_property def default_model(self): return self.get_model(self.default_mname) def get_tokenizer(self, mname): if mname not in self.tokenizers_cache: self.tokenizers_cache[mname] = FSMTTokenizer.from_pretrained(mname) return self.tokenizers_cache[mname] def get_model(self, mname): if mname not in self.models_cache: self.models_cache[mname] = FSMTForConditionalGeneration.from_pretrained(mname).to(torch_device) if torch_device == "cuda": self.models_cache[mname].half() return self.models_cache[mname] @slow def test_inference_no_head(self): tokenizer = self.default_tokenizer model = FSMTModel.from_pretrained(self.default_mname).to(torch_device) src_text = "My friend computer will translate this for me" input_ids = tokenizer([src_text], return_tensors="pt")["input_ids"] input_ids = _long_tensor(input_ids).to(torch_device) inputs_dict = prepare_fsmt_inputs_dict(model.config, input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 10, model.config.tgt_vocab_size)) self.assertEqual(output.shape, expected_shape) # expected numbers were generated when en-ru model, using just fairseq's model4.pt # may have to adjust if switched to a different checkpoint expected_slice = torch.tensor( [[-1.5753, -1.5753, 2.8975], [-0.9540, -0.9540, 1.0299], [-3.3131, -3.3131, 0.5219]] ).to(torch_device) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def translation_setup(self, pair): text = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } src, tgt = pair.split("-") print(f"Testing {src} -> {tgt}") mname = f"facebook/wmt19-{pair}" src_text = text[src] tgt_text = text[tgt] tokenizer = self.get_tokenizer(mname) model = self.get_model(mname) return tokenizer, model, src_text, tgt_text @parameterized.expand(pairs) @slow def test_translation_direct(self, pair): tokenizer, model, src_text, tgt_text = self.translation_setup(pair) input_ids = tokenizer.encode(src_text, return_tensors="pt").to(torch_device) outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) assert decoded == tgt_text, f"\n\ngot: {decoded}\nexp: {tgt_text}\n" @parameterized.expand(pairs) @slow def test_translation_pipeline(self, pair): tokenizer, model, src_text, tgt_text = self.translation_setup(pair) device = 0 if torch_device == "cuda" else -1 pipeline = TranslationPipeline(model, tokenizer, framework="pt", device=device) output = pipeline([src_text]) self.assertEqual([tgt_text], [x["translation_text"] for x in output]) @require_torch class TestSinusoidalPositionalEmbeddings(unittest.TestCase): padding_idx = 1 tolerance = 1e-4 def test_basic(self): input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device) emb1 = SinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6, padding_idx=self.padding_idx).to( torch_device ) emb = emb1(input_ids) desired_weights = torch.tensor( [ [9.0930e-01, 1.9999e-02, 2.0000e-04, -4.1615e-01, 9.9980e-01, 1.0000e00], [1.4112e-01, 2.9995e-02, 3.0000e-04, -9.8999e-01, 9.9955e-01, 1.0000e00], ] ).to(torch_device) self.assertTrue( torch.allclose(emb[0], desired_weights, atol=self.tolerance), msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n", ) def test_odd_embed_dim(self): # odd embedding_dim is allowed SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=self.padding_idx).to(torch_device) # odd num_embeddings is allowed SinusoidalPositionalEmbedding(num_positions=5, embedding_dim=4, padding_idx=self.padding_idx).to(torch_device) @unittest.skip("different from marian (needs more research)") def test_positional_emb_weights_against_marian(self): desired_weights = torch.tensor( [ [0, 0, 0, 0, 0], [0.84147096, 0.82177866, 0.80180490, 0.78165019, 0.76140374], [0.90929741, 0.93651021, 0.95829457, 0.97505713, 0.98720258], ] ) emb1 = SinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512, padding_idx=self.padding_idx).to( torch_device ) weights = emb1.weights.data[:3, :5] # XXX: only the 1st and 3rd lines match - this is testing against # verbatim copy of SinusoidalPositionalEmbedding from fairseq self.assertTrue( torch.allclose(weights, desired_weights, atol=self.tolerance), msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n", ) # test that forward pass is just a lookup, there is no ignore padding logic input_ids = torch.tensor( [[4, 10, self.padding_idx, self.padding_idx, self.padding_idx]], dtype=torch.long, device=torch_device ) no_cache_pad_zero = emb1(input_ids)[0] # XXX: only the 1st line matches the 3rd self.assertTrue( torch.allclose(torch.tensor(desired_weights, device=torch_device), no_cache_pad_zero[:3, :5], atol=1e-3) )