# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): import torch from transformers import AutoModel @require_torch @require_sentencepiece @require_tokenizers class BortIntegrationTest(unittest.TestCase): @slow def test_output_embeds_base_model(self): model = AutoModel.from_pretrained("amazon/bort") model.to(torch_device) input_ids = torch.tensor( [[0, 18077, 4082, 7804, 8606, 6195, 2457, 3321, 11, 10489, 16, 269, 2579, 328, 2]], device=torch_device, dtype=torch.long, ) # Schloß Nymphenburg in Munich is really nice! output = model(input_ids)["last_hidden_state"] expected_shape = torch.Size((1, 15, 1024)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.0349, 0.0436, -1.8654], [-0.6964, 0.0835, -1.7393], [-0.9819, 0.2956, -0.2868]]], device=torch_device, dtype=torch.float, ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))