# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers.testing_utils import slow from transformers.tokenization_dpr import ( DPRContextEncoderTokenizer, DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast, DPRReaderOutput, DPRReaderTokenizer, DPRReaderTokenizerFast, ) from transformers.tokenization_utils_base import BatchEncoding from .test_tokenization_bert import BertTokenizationTest class DPRContextEncoderTokenizationTest(BertTokenizationTest): tokenizer_class = DPRContextEncoderTokenizer def get_rust_tokenizer(self, **kwargs): return DPRContextEncoderTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) class DPRQuestionEncoderTokenizationTest(BertTokenizationTest): tokenizer_class = DPRQuestionEncoderTokenizer def get_rust_tokenizer(self, **kwargs): return DPRQuestionEncoderTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) class DPRReaderTokenizationTest(BertTokenizationTest): tokenizer_class = DPRReaderTokenizer def get_rust_tokenizer(self, **kwargs): return DPRReaderTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) @slow def test_decode_best_spans(self): tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased") text_1 = tokenizer.encode("question sequence", add_special_tokens=False) text_2 = tokenizer.encode("title sequence", add_special_tokens=False) text_3 = tokenizer.encode("text sequence " * 4, add_special_tokens=False) input_ids = [[101] + text_1 + [102] + text_2 + [102] + text_3] reader_input = BatchEncoding({"input_ids": input_ids}) start_logits = [[0] * len(input_ids[0])] end_logits = [[0] * len(input_ids[0])] relevance_logits = [0] reader_output = DPRReaderOutput(start_logits, end_logits, relevance_logits) start_index, end_index = 8, 9 start_logits[0][start_index] = 10 end_logits[0][end_index] = 10 predicted_spans = tokenizer.decode_best_spans(reader_input, reader_output) self.assertEqual(predicted_spans[0].start_index, start_index) self.assertEqual(predicted_spans[0].end_index, end_index) self.assertEqual(predicted_spans[0].doc_id, 0) @slow def test_call(self): tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased") text_1 = tokenizer.encode("question sequence", add_special_tokens=False) text_2 = tokenizer.encode("title sequence", add_special_tokens=False) text_3 = tokenizer.encode("text sequence", add_special_tokens=False) expected_input_ids = [101] + text_1 + [102] + text_2 + [102] + text_3 encoded_input = tokenizer(questions=["question sequence"], titles=["title sequence"], texts=["text sequence"]) self.assertIn("input_ids", encoded_input) self.assertIn("attention_mask", encoded_input) self.assertListEqual(encoded_input["input_ids"][0], expected_input_ids)