# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch emu3 model.""" import tempfile import unittest import numpy as np from transformers import Emu3Processor, GPT2TokenizerFast from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import Emu3ImageProcessor class Emu3ProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = Emu3Processor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = Emu3ImageProcessor() extra_special_tokens = extra_special_tokens = { "image_token": "", "boi_token": "<|image start|>", "eoi_token": "<|image end|>", "image_wrapper_token": "<|image token|>", "eof_token": "<|extra_201|>", } tokenizer = GPT2TokenizerFast.from_pretrained( "openai-community/gpt2", extra_special_tokens=extra_special_tokens ) tokenizer.pad_token_id = 0 tokenizer.sep_token_id = 1 processor = cls.processor_class( image_processor=image_processor, tokenizer=tokenizer, chat_template="dummy_template" ) processor.save_pretrained(cls.tmpdirname) def prepare_processor_dict(self): return { "chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}", } # fmt: skip def test_processor_for_generation(self): processor_components = self.prepare_components() processor = self.processor_class(**processor_components) # we don't need an image as input because the model will generate one input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, return_for_image_generation=True, return_tensors="pt") self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "image_sizes"]) self.assertEqual(inputs[self.text_input_name].shape[-1], 8) # when `return_for_image_generation` is set, we raise an error that image should not be provided with self.assertRaises(ValueError): inputs = processor( text=input_str, images=image_input, return_for_image_generation=True, return_tensors="pt" ) def test_processor_postprocess(self): processor_components = self.prepare_components() processor = self.processor_class(**processor_components) input_str = "lower newer" orig_image_input = self.prepare_image_inputs() orig_image = np.array(orig_image_input).transpose(2, 0, 1) inputs = processor(text=input_str, images=orig_image, do_resize=False, return_tensors="np") normalized_image_input = inputs.pixel_values unnormalized_images = processor.postprocess(normalized_image_input, return_tensors="np")["pixel_values"] # For an image where pixels go from 0 to 255 the diff can be 1 due to some numerical precision errors when scaling and unscaling self.assertTrue(np.abs(orig_image - unnormalized_images).max() >= 1)