import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from .utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class TFBenchmarkTest(unittest.TestCase): def check_results_dict_not_empty(self, results): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]): result = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(result) def test_inference_no_configs_eager(self): MODEL_ID = "sshleifer/tiny-gpt2" benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1], eager_mode=True, no_multi_process=True, ) benchmark = TensorFlowBenchmark(benchmark_args) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_inference_no_configs_only_pretrain(self): MODEL_ID = "sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english" benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1], no_multi_process=True, only_pretrain_model=True, ) benchmark = TensorFlowBenchmark(benchmark_args) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_inference_no_configs_graph(self): MODEL_ID = "sshleifer/tiny-gpt2" benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1], no_multi_process=True, ) benchmark = TensorFlowBenchmark(benchmark_args) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_inference_with_configs_eager(self): MODEL_ID = "sshleifer/tiny-gpt2" config = AutoConfig.from_pretrained(MODEL_ID) benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1], eager_mode=True, no_multi_process=True, ) benchmark = TensorFlowBenchmark(benchmark_args, [config]) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_inference_with_configs_graph(self): MODEL_ID = "sshleifer/tiny-gpt2" config = AutoConfig.from_pretrained(MODEL_ID) benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1], no_multi_process=True, ) benchmark = TensorFlowBenchmark(benchmark_args, [config]) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_inference_encoder_decoder_with_configs(self): MODEL_ID = "patrickvonplaten/t5-tiny-random" config = AutoConfig.from_pretrained(MODEL_ID) benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1], no_multi_process=True, ) benchmark = TensorFlowBenchmark(benchmark_args, configs=[config]) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.") def test_inference_no_configs_xla(self): MODEL_ID = "sshleifer/tiny-gpt2" benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1], use_xla=True, no_multi_process=True, ) benchmark = TensorFlowBenchmark(benchmark_args) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_save_csv_files(self): MODEL_ID = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], no_inference=False, save_to_csv=True, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"), inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"), env_info_csv_file=os.path.join(tmp_dir, "env.csv"), no_multi_process=True, ) benchmark = TensorFlowBenchmark(benchmark_args) benchmark.run() self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists()) def test_trace_memory(self): MODEL_ID = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(summary): self.assertTrue(hasattr(summary, "sequential")) self.assertTrue(hasattr(summary, "cumulative")) self.assertTrue(hasattr(summary, "current")) self.assertTrue(hasattr(summary, "total")) with tempfile.TemporaryDirectory() as tmp_dir: benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], no_inference=False, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(tmp_dir, "log.txt"), log_print=True, trace_memory_line_by_line=True, eager_mode=True, no_multi_process=True, ) benchmark = TensorFlowBenchmark(benchmark_args) result = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())