# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Gemma3 model.""" import unittest from io import BytesIO import requests from PIL import Image from transformers import is_torch_available from transformers.testing_utils import ( cleanup, require_torch_gpu, slow, torch_device, ) if is_torch_available(): import torch from transformers import ShieldGemma2ForImageClassification, ShieldGemma2Processor @slow @require_torch_gpu # @require_read_token class ShieldGemma2IntegrationTest(unittest.TestCase): def tearDown(self): cleanup(torch_device, gc_collect=True) def test_model(self): model_id = "google/shieldgemma-2-4b-it" processor = ShieldGemma2Processor.from_pretrained(model_id, padding_side="left") url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png" response = requests.get(url) image = Image.open(BytesIO(response.content)) model = ShieldGemma2ForImageClassification.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 ).to(torch_device) inputs = processor(images=[image]).to(torch_device) output = model(**inputs) self.assertEqual(len(output.probabilities), 3) for element in output.probabilities: self.assertEqual(len(element), 2)