# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Splinter model.""" import copy import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import SplinterConfig, SplinterForPreTraining, SplinterForQuestionAnswering, SplinterModel class SplinterModelTester: def __init__( self, parent, batch_size=13, num_questions=3, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, question_token_id=1, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.num_questions = num_questions self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.question_token_id = question_token_id self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids[:, 1] = self.question_token_id input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) start_positions = None end_positions = None question_positions = None if self.use_labels: start_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size) end_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size) question_positions = ids_tensor([self.batch_size, self.num_questions], self.num_labels) config = SplinterConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, question_token_id=self.question_token_id, ) return (config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions, ): model = SplinterModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions, ): model = SplinterForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=start_positions[:, 0], end_positions=end_positions[:, 0], ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions, ): model = SplinterForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=start_positions, end_positions=end_positions, question_positions=question_positions, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.num_questions, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.num_questions, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SplinterModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( SplinterModel, SplinterForQuestionAnswering, SplinterForPreTraining, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": SplinterModel, "question-answering": SplinterForQuestionAnswering} if is_torch_available() else {} ) # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if pipeline_test_case_name == "QAPipelineTests": return True elif pipeline_test_case_name == "FeatureExtractionPipelineTests" and tokenizer_name.endswith("Fast"): return True return False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if issubclass(model_class, SplinterForPreTraining): inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, self.model_tester.num_questions, dtype=torch.long, device=torch_device, ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, self.model_tester.num_questions, dtype=torch.long, device=torch_device, ) inputs_dict["question_positions"] = torch.zeros( self.model_tester.batch_size, self.model_tester.num_questions, dtype=torch.long, device=torch_device, ) elif issubclass(model_class, SplinterForQuestionAnswering): inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = SplinterModelTester(self) self.config_tester = ConfigTester(self, config_class=SplinterConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): if isinstance(model, SplinterForPreTraining): with self.assertRaises(TypeError): # question_positions must not be None. model(**inputs)[0] else: model(**inputs)[0] @slow def test_model_from_pretrained(self): model_name = "tau/splinter-base" model = SplinterModel.from_pretrained(model_name) self.assertIsNotNone(model) # overwrite from common since `SplinterForPreTraining` could contain different number of question tokens in inputs. # When the batch is distributed to multiple devices, each replica could get different values for the maximal number # of question tokens (see `SplinterForPreTraining._prepare_question_positions()`), and the model returns different # shape along dimension 1 (i.e. `num_questions`) that could not be combined into a single tensor as an output. @require_torch_multi_gpu def test_multi_gpu_data_parallel_forward(self): from torch import nn config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # some params shouldn't be scattered by nn.DataParallel # so just remove them if they are present. blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"] for k in blacklist_non_batched_params: inputs_dict.pop(k, None) # move input tensors to cuda:O for k, v in inputs_dict.items(): if torch.is_tensor(v): inputs_dict[k] = v.to(0) for model_class in self.all_model_classes: # Skip this case since it will fail sometimes, as described above. if model_class == SplinterForPreTraining: continue model = model_class(config=config) model.to(0) model.eval() # Wrap model in nn.DataParallel model = nn.DataParallel(model) with torch.no_grad(): _ = model(**self._prepare_for_class(inputs_dict, model_class)) @require_torch class SplinterModelIntegrationTest(unittest.TestCase): @slow def test_splinter_question_answering(self): model = SplinterForQuestionAnswering.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] Brad was born in [QUESTION] . He returned to the United Kingdom later . [SEP]" # Output should be the span "the United Kingdom" input_ids = torch.tensor( [[101, 7796, 1108, 1255, 1107, 104, 119, 1124, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]] ) output = model(input_ids) expected_shape = torch.Size((1, 16)) self.assertEqual(output.start_logits.shape, expected_shape) self.assertEqual(output.end_logits.shape, expected_shape) self.assertEqual(torch.argmax(output.start_logits), 10) self.assertEqual(torch.argmax(output.end_logits), 12) @slow def test_splinter_pretraining(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" # Output should be the spans "Brad" and "the United Kingdom" input_ids = torch.tensor( [[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]] ) question_positions = torch.tensor([[1, 5]], dtype=torch.long) output = model(input_ids, question_positions=question_positions) expected_shape = torch.Size((1, 2, 16)) self.assertEqual(output.start_logits.shape, expected_shape) self.assertEqual(output.end_logits.shape, expected_shape) self.assertEqual(torch.argmax(output.start_logits[0, 0]), 7) self.assertEqual(torch.argmax(output.end_logits[0, 0]), 7) self.assertEqual(torch.argmax(output.start_logits[0, 1]), 10) self.assertEqual(torch.argmax(output.end_logits[0, 1]), 12) @slow def test_splinter_pretraining_loss_requires_question_positions(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" # Output should be the spans "Brad" and "the United Kingdom" input_ids = torch.tensor( [[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]] ) start_positions = torch.tensor([[7, 10]], dtype=torch.long) end_positions = torch.tensor([7, 12], dtype=torch.long) with self.assertRaises(TypeError): model( input_ids, start_positions=start_positions, end_positions=end_positions, ) @slow def test_splinter_pretraining_loss(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" # Output should be the spans "Brad" and "the United Kingdom" input_ids = torch.tensor( [ [101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102], [101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102], ] ) start_positions = torch.tensor([[7, 10], [7, 10]], dtype=torch.long) end_positions = torch.tensor([[7, 12], [7, 12]], dtype=torch.long) question_positions = torch.tensor([[1, 5], [1, 5]], dtype=torch.long) output = model( input_ids, start_positions=start_positions, end_positions=end_positions, question_positions=question_positions, ) self.assertAlmostEqual(output.loss.item(), 0.0024, 4) @slow def test_splinter_pretraining_loss_with_padding(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" # Output should be the spans "Brad" and "the United Kingdom" input_ids = torch.tensor( [ [101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102], ] ) start_positions = torch.tensor([[7, 10]], dtype=torch.long) end_positions = torch.tensor([7, 12], dtype=torch.long) question_positions = torch.tensor([[1, 5]], dtype=torch.long) start_positions_with_padding = torch.tensor([[7, 10, 0]], dtype=torch.long) end_positions_with_padding = torch.tensor([7, 12, 0], dtype=torch.long) question_positions_with_padding = torch.tensor([[1, 5, 0]], dtype=torch.long) output = model( input_ids, start_positions=start_positions, end_positions=end_positions, question_positions=question_positions, ) output_with_padding = model( input_ids, start_positions=start_positions_with_padding, end_positions=end_positions_with_padding, question_positions=question_positions_with_padding, ) self.assertAlmostEqual(output.loss.item(), output_with_padding.loss.item(), 4) # Note that the original code uses 0 to denote padded question tokens # and their start and end positions. As the pad_token_id of the model's # config is used for the losse's ignore_index in SplinterForPreTraining, # we add this test to ensure anybody making changes to the default # value of the config, will be aware of the implication. self.assertEqual(model.config.pad_token_id, 0) @slow def test_splinter_pretraining_prepare_question_positions(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") input_ids = torch.tensor( [ [101, 104, 1, 2, 104, 3, 4, 102], [101, 1, 104, 2, 104, 3, 104, 102], [101, 1, 2, 104, 104, 3, 4, 102], [101, 1, 2, 3, 4, 5, 104, 102], ] ) question_positions = torch.tensor([[1, 4, 0], [2, 4, 6], [3, 4, 0], [6, 0, 0]], dtype=torch.long) output_without_positions = model(input_ids) output_with_positions = model(input_ids, question_positions=question_positions) self.assertTrue((output_without_positions.start_logits == output_with_positions.start_logits).all()) self.assertTrue((output_without_positions.end_logits == output_with_positions.end_logits).all())