FROM nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04 LABEL maintainer="Hugging Face" ARG DEBIAN_FRONTEND=noninteractive # Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands) SHELL ["sh", "-lc"] # The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant # to be used as arguments for docker build (so far). ARG PYTORCH='2.6.0' # Example: `cu102`, `cu113`, etc. ARG CUDA='cu121' # Disable kernel mapping for quantization tests ENV DISABLE_KERNEL_MAPPING=1 RUN apt update RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg RUN python3 -m pip install --no-cache-dir --upgrade pip ARG REF=main RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile RUN echo torch=$VERSION # `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build. # Currently, let's just use their latest releases (when `torch` is installed with a release version) RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate # needed in bnb and awq RUN python3 -m pip install --no-cache-dir einops # Add bitsandbytes for mixed int8 testing RUN python3 -m pip install --no-cache-dir bitsandbytes # Add gptqmodel for gtpq quantization testing, installed from source for pytorch==2.6.0 compatibility RUN python3 -m pip install lm_eval RUN git clone https://github.com/ModelCloud/GPTQModel.git && cd GPTQModel && pip install -v . --no-build-isolation # Add optimum for gptq quantization testing RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum # Add PEFT RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft # Add aqlm for quantization testing RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2 # Add vptq for quantization testing RUN pip install vptq # Add spqr for quantization testing # Commented for now as No matching distribution found we need to reach out to the authors # RUN python3 -m pip install --no-cache-dir spqr_quant[gpu] # Add hqq for quantization testing RUN python3 -m pip install --no-cache-dir hqq # For GGUF tests RUN python3 -m pip install --no-cache-dir gguf # Add autoawq for quantization testing # New release v0.2.8 RUN python3 -m pip install --no-cache-dir autoawq[kernels] # Add quanto for quantization testing RUN python3 -m pip install --no-cache-dir optimum-quanto # Add eetq for quantization testing RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submodule update --init --recursive && pip install . # # Add flute-kernel and fast_hadamard_transform for quantization testing # # Commented for now as they cause issues with the build # # TODO: create a new workflow to test them # RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1 # RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git # Add compressed-tensors for quantization testing RUN python3 -m pip install --no-cache-dir compressed-tensors # Add AMD Quark for quantization testing RUN python3 -m pip install --no-cache-dir amd-quark # Add AutoRound for quantization testing RUN python3 -m pip install --no-cache-dir "auto-round>=0.5.0" # Add transformers in editable mode RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch] # `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs RUN python3 -m pip uninstall -y kernels # When installing in editable mode, `transformers` is not recognized as a package. # this line must be added in order for python to be aware of transformers. RUN cd transformers && python3 setup.py develop