import argparse import json from pathlib import Path import torch from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer try: from .utils import calculate_rouge, use_task_specific_params, calculate_bleu_score except ImportError: from utils import calculate_rouge, use_task_specific_params, calculate_bleu_score DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def generate_summaries_or_translations( examples: list, out_file: str, model_name: str, batch_size: int = 8, device: str = DEFAULT_DEVICE, fp16=False, **gen_kwargs, ) -> None: fout = Path(out_file).open("w", encoding="utf-8") model_name = str(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) if fp16: model = model.half() tokenizer = AutoTokenizer.from_pretrained(model_name) # update config with summarization specific params use_task_specific_params(model, "summarization") for batch in tqdm(list(chunks(examples, batch_size))): if "t5" in model_name: batch = [model.config.prefix + text for text in batch] batch = tokenizer.batch_encode_plus( batch, max_length=1024, return_tensors="pt", truncation=True, pad_to_max_length=True ).to(device) summaries = model.generate(**batch, **gen_kwargs) dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) for hypothesis in dec: fout.write(hypothesis + "\n") fout.flush() def run_generate(): parser = argparse.ArgumentParser() parser.add_argument("input_path", type=str, help="like cnn_dm/test.source") parser.add_argument("output_path", type=str, help="where to save summaries") parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.") parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test_reference_summaries.txt") parser.add_argument("--score_path", type=str, required=False, help="where to save the rouge score in json format") parser.add_argument("--metric", type=str, choices=["bleu", "rouge"], default="rouge") parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.") parser.add_argument("--bs", type=int, default=8, required=False, help="batch size") parser.add_argument("--fp16", action="store_true") args = parser.parse_args() examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()] generate_summaries_or_translations( examples, args.output_path, args.model_name, batch_size=args.bs, device=args.device, fp16=args.fp16 ) output_lns = [x.rstrip() for x in open(args.output_path).readlines()] scores = {} if args.reference_path is not None: score_fn = {"bleu": calculate_bleu_score, "rouge": calculate_rouge}[args.metric] reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()] scores: dict = score_fn(output_lns, reference_lns) if args.score_path is not None: json.dump(scores, open("score_path", "w+")) return scores if __name__ == "__main__": run_generate()