# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Clvp model. """ import gc import tempfile import unittest import datasets import numpy as np from transformers import ClvpConfig, ClvpDecoderConfig, ClvpEncoderConfig from transformers.testing_utils import ( require_torch, slow, torch_device, ) from transformers.utils import is_torch_available from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ClvpEncoder, ClvpForCausalLM, ClvpModel, ClvpModelForConditionalGeneration from transformers.models.clvp.modeling_clvp import CLVP_PRETRAINED_MODEL_ARCHIVE_LIST from transformers import ClvpFeatureExtractor, ClvpTokenizer class ClvpEncoderTester: def __init__( self, parent, batch_size=2, seq_length=7, is_training=False, use_input_mask=True, use_labels=True, vocab_size=50, hidden_size=128, projection_dim=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=32, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 def get_config(self): encoder_config = ClvpEncoderConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, ) return encoder_config def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 encoder_config = self.get_config() return encoder_config, input_ids, input_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() speech_config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids.to(torch_device), "attention_mask": input_mask.to(torch_device)} return speech_config, inputs_dict def create_and_check_model(self, speech_config, input_ids, input_mask): text_config = ClvpEncoderConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) text_encoder_model = ClvpEncoder(config=text_config) text_encoder_model.to(torch_device) text_encoder_model.eval() with torch.no_grad(): result = text_encoder_model(input_ids, attention_mask=input_mask) result = text_encoder_model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result[0].shape, (self.batch_size, self.projection_dim)) # now check with speech config speech_encoder_model = ClvpEncoder(config=speech_config) speech_encoder_model.to(torch_device) speech_encoder_model.eval() with torch.no_grad(): result = speech_encoder_model(input_ids, attention_mask=input_mask) result = speech_encoder_model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result[0].shape, (self.batch_size, self.projection_dim)) @require_torch class ClvpEncoderTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (ClvpEncoder,) if is_torch_available() else () test_pruning = False test_head_masking = False test_torchscript = False def setUp(self): self.model_tester = ClvpEncoderTester(self) self.encoder_config_tester = ConfigTester(self, config_class=ClvpEncoderConfig, hidden_size=32) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def test_config(self): self.encoder_config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="ClvpEncoder does not output loss") def test_training(self): pass @unittest.skip(reason="ClvpEncoder does not output loss") def test_training_gradient_checkpointing(self): pass class ClvpDecoderTester: def __init__( self, parent, batch_size=2, seq_length=3, is_training=False, vocab_size=300, max_position_embeddings=256, max_text_tokens=256, use_input_mask=True, hidden_size=128, num_hidden_layers=2, num_attention_heads=2, bos_token_id=97, eos_token_id=98, relative_attention_num_buckets=4, relative_attention_max_distance=16, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.max_text_tokens = max_text_tokens self.use_input_mask = use_input_mask self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance def get_config(self): decoder_config = ClvpDecoderConfig( vocab_size=self.vocab_size, max_position_embeddings=self.max_position_embeddings, max_text_tokens=self.max_text_tokens, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, relative_attention_num_buckets=self.relative_attention_num_buckets, relative_attention_max_distance=self.relative_attention_max_distance, ) return decoder_config def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 decoder_config = self.get_config() return decoder_config, input_ids, input_mask def create_and_check_model(self, config, input_ids, attention_mask): model = ClvpForCausalLM(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids=input_ids, attention_mask=attention_mask) self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = { "input_ids": input_ids.to(torch_device), "attention_mask": attention_mask.to(torch_device), } return config, inputs_dict @require_torch class ClvpDecoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (ClvpModel, ClvpForCausalLM) if is_torch_available() else () all_generative_model_classes = (ClvpForCausalLM,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": ClvpModelForConditionalGeneration} if is_torch_available() else {} test_pruning = False def setUp(self): self.model_tester = ClvpDecoderTester(self) self.decoder_config_tester = ConfigTester(self, config_class=ClvpDecoderConfig, hidden_size=32) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): if return_labels and model_class == ClvpForCausalLM: inputs_dict["labels"] = torch.zeros( [self.model_tester.batch_size, self.model_tester.seq_length], device=torch_device ).long() return inputs_dict def test_training(self): # we will only test the ClvpForCausalLM since it outputs loss config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = ClvpForCausalLM(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, ClvpForCausalLM, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): # we will only test the ClvpForCausalLM since it outputs loss config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True model = ClvpForCausalLM(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, ClvpForCausalLM, return_labels=True) loss = model(**inputs).loss loss.backward() class ClvpModelForConditionalGenerationTester: def __init__(self, parent, is_training=False): self.parent = parent self.clvp_encoder_tester = ClvpEncoderTester(parent) self.is_training = is_training def get_config(self): decoder_config = ClvpDecoderConfig( vocab_size=50, max_position_embeddings=30, max_text_tokens=30, hidden_size=128, num_hidden_layers=1, num_attention_heads=2, bos_token_id=97, eos_token_id=98, relative_attention_num_buckets=4, relative_attention_max_distance=16, ) text_config = self.clvp_encoder_tester.get_config() speech_config = self.clvp_encoder_tester.get_config() speech_config.vocab_size = 300 return ClvpConfig.from_sub_model_configs( text_config, speech_config, decoder_config, projection_dim=16, ) def prepare_config_and_inputs(self): _, input_ids, attention_mask = self.clvp_encoder_tester.prepare_config_and_inputs() ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050)) _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values() feature_extractor = ClvpFeatureExtractor() input_features = feature_extractor(raw_speech=audio, sampling_rate=sr, return_tensors="pt")[ "input_features" ].to(torch_device) config = self.get_config() return config, input_ids, attention_mask, input_features def create_and_check_model(self, config, input_ids, attention_mask, input_features): model = ClvpModelForConditionalGeneration(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids=input_ids, input_features=input_features, attention_mask=attention_mask) self.parent.assertEqual(result.logits_per_speech.shape, (2, self.clvp_encoder_tester.batch_size)) self.parent.assertEqual(result.logits_per_text.shape, (self.clvp_encoder_tester.batch_size, 2)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, input_features = config_and_inputs inputs_dict = { "input_ids": input_ids.to(torch_device), "attention_mask": attention_mask.to(torch_device), "input_features": input_features.to(torch_device), "return_loss": False, } return config, inputs_dict @require_torch class ClvpModelForConditionalGenerationTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (ClvpModelForConditionalGeneration,) if is_torch_available() else () test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = ClvpModelForConditionalGenerationTester(self) self.clvp_config_tester = ConfigTester(self, config_class=ClvpConfig, hidden_size=32) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # check for decoder model, text encoder model and speech encoder model hidden states decoder_hidden_states = outputs.decoder_hidden_states text_encoder_hidden_states = outputs.text_encoder_hidden_states speech_encoder_hidden_states = outputs.speech_encoder_hidden_states # check length of the hidden states expected_decoder_num_layers = config.decoder_config.num_hidden_layers + 1 self.assertEqual(len(decoder_hidden_states), expected_decoder_num_layers) expected_speech_encoder_num_layers = config.text_config.num_hidden_layers + 1 self.assertEqual(len(text_encoder_hidden_states), expected_speech_encoder_num_layers) expected_text_encoder_num_layers = config.speech_config.num_hidden_layers + 1 self.assertEqual(len(speech_encoder_hidden_states), expected_text_encoder_num_layers) # check shapes of each hidden state # for the decoder model we will only test the dimension because the ClvpConditioningEncoder could increase # the sequence lengths. self.assertEqual(decoder_hidden_states[0].shape[-1], config.decoder_config.hidden_size) # the testing for text encoder stays standard because we just pass the text tokens here. self.assertListEqual( list(text_encoder_hidden_states[0].shape[-2:]), [self.model_tester.clvp_encoder_tester.seq_length, config.text_config.hidden_size], ) # for the decoder model we will only test the dimension because the fix_decoder_outputs method could increase # the sequence lengths by adding `decoder_fixing_codes` tokens at the end. self.assertEqual(speech_encoder_hidden_states[0].shape[-1], config.speech_config.hidden_size) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="ClvpModelForConditionalGeneration does not have get_input_embeddings") def test_inputs_embeds(self): pass @unittest.skip(reason="ClvpModelForConditionalGeneration does not have get_input_embeddings") def test_model_common_attributes(self): pass # override as the `logit_scale` parameter initilization is different for Clvp def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": expected_value = np.log(1 / 0.07) returned_value = param.data.item() self.assertAlmostEqual( returned_value, expected_value, delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: expected_range = [0.0, 1.0] returned_range = ((param.data.mean() * 1e9).round() / 1e9).item() self.assertIn( returned_range, expected_range, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_load_speech_text_decoder_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save ClvpConfig and check if we can load ClvpEncoderConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) encoder_config = ClvpEncoderConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), encoder_config.to_dict()) # Save ClvpConfig and check if we can load ClvpDecoderConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) decoder_config = ClvpDecoderConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.decoder_config.to_dict(), decoder_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in CLVP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ClvpModelForConditionalGeneration.from_pretrained(model_name) self.assertIsNotNone(model) # Since Clvp has a lot of different models connected with each other it's better to test each of them individually along # with a test_full_model_integration. If the model breaks in future, it could be of a great help to identify the broken part. @slow @require_torch class ClvpIntegrationTest(unittest.TestCase): def setUp(self): self.text = "This is an example text." ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050)) _, self.speech_samples, self.sr = ds.sort("id").select(range(1))[:1]["audio"][0].values() self.model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev").to(torch_device) self.model.eval() tokenizer = ClvpTokenizer.from_pretrained("susnato/clvp_dev") feature_extractor = ClvpFeatureExtractor.from_pretrained("susnato/clvp_dev") tokenizer_output = tokenizer(self.text, return_tensors="pt") self.text_tokens = tokenizer_output["input_ids"].to(torch_device) self.input_features = feature_extractor( raw_speech=self.speech_samples, sampling_rate=self.sr, return_tensors="pt" )["input_features"].to(torch_device) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def test_conditional_encoder(self): with torch.no_grad(): conditioning_encoder_outputs = self.model.conditioning_encoder( input_features=self.input_features, input_ids=self.text_tokens ).to("cpu") self.assertEqual( conditioning_encoder_outputs.shape, torch.Size((self.input_features.shape[0], 18, self.model.config.decoder_config.hidden_size)), ) EXPECTED_OUTPUTS = torch.tensor( [[-0.8582, 0.5228, 1.9944], [-0.0465, -1.1017, -0.0093], [-0.0466, -0.6030, -0.1280]] ) self.assertTrue(torch.allclose(conditioning_encoder_outputs[0, :3, :3], EXPECTED_OUTPUTS, atol=1e-4)) def test_decoder_model_generate(self): autoregressive_model_output = self.model.speech_decoder_model.generate(input_ids=self.text_tokens).cpu() EXPECTED_OUTPUTS = torch.tensor([[147, 2, 54, 2, 43, 2, 169, 122, 29, 64, 2, 136, 37, 33, 9, 8193]]) self.assertTrue(torch.allclose(autoregressive_model_output, EXPECTED_OUTPUTS)) def test_text_and_speech_encoder_models(self): # check for text embeds text_embeds = self.model.text_encoder_model(input_ids=self.text_tokens, return_dict=True)[0].cpu() # fmt: off EXPECTED_TEXT_EMBEDS = torch.tensor([1.4798, -2.0005, 2.3902, -0.5042, 1.6401, -2.4135, -1.4800, 3.0118, -2.4422, 1.3266, 2.2339, 1.4761, -4.8983, -1.3592, 6.0251, 6.7364, 2.2576, 3.7229, -10.0436, 4.6676]) # fmt: on self.assertTrue(torch.allclose(text_embeds[0, :20], EXPECTED_TEXT_EMBEDS, atol=1e-4)) # check for speech embeds speech_embeds = self.model.speech_encoder_model(input_ids=self.text_tokens, return_dict=True)[0].cpu() # fmt: off EXPECTED_SPEECH_EMBEDS = torch.tensor([3.1202, -3.1183, -1.4264, -6.1339, 1.8885, -0.1983, 0.9461, -1.7414, 0.3320, -3.8400, -1.5715, 1.5096, -1.7576, 0.2387, 4.9758, 5.8450, -6.2534, 2.8587, -5.5816, 4.7821]) # fmt: on self.assertTrue(torch.allclose(speech_embeds[0, :20], EXPECTED_SPEECH_EMBEDS, atol=1e-4)) def test_full_model_integration(self): full_model_output = self.model.generate( input_ids=self.text_tokens, input_features=self.input_features, do_sample=False, num_beams=4, num_return_sequences=4, max_new_tokens=10, ) EXPECTED_SPEECH_IDS = torch.tensor([[1953, 1080, 612], [1953, 612, 493], [1953, 612, 716]]) EXPECTED_SIMILARITY_SCORES = torch.tensor([[14.7660, 14.4569, 13.6472, 13.5683]]) self.assertTrue(torch.allclose(full_model_output.speech_ids.cpu()[-3:, -3:], EXPECTED_SPEECH_IDS)) self.assertTrue(torch.allclose(full_model_output.logits_per_text.cpu(), EXPECTED_SIMILARITY_SCORES))