# Add parent directory to python path to access lightning_base.py export PYTHONPATH="../":"${PYTHONPATH}" #creates the custom knowlegebase python use_own_knowledge_dataset.py # Start a single-node Ray cluster. ray start --head # A sample finetuning run, you need to specify data_dir, output_dir and model_name_or_path # run ./examples/rag/finetune_rag_ray.sh --help to see all the possible options python finetune_rag.py \ --model_name_or_path facebook/rag-token-base \ --model_type rag_token \ --fp16 \ --gpus 2 \ --profile \ --do_train \ --end2end \ --do_predict \ --n_val -1 \ --train_batch_size 1 \ --eval_batch_size 1 \ --max_source_length 128 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-05 \ --num_train_epochs 10 \ --warmup_steps 500 \ --gradient_accumulation_steps 1 \ --distributed_retriever ray \ --num_retrieval_workers 4 \ --index_name custom \ --context_encoder_name facebook/dpr-ctx_encoder-multiset-base \ --index_gpus 2 \ --gpu_order [2,3,4,5,6,7,8,9,0,1] \ --indexing_freq 5 # Stop the Ray cluster. ray stop #CUDA_VISIBLE_DEVICES=2,3,4,5,6,7,8,9,0,1 sh ./test_run/test_finetune.sh #Make sure --gpu_order is same.