# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, pipeline from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from .test_pipelines_common import ANY, PipelineTestCaseMeta @is_pipeline_test class TextGenerationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta): model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def test_small_model_pt(self): text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt") # Using `do_sample=False` to force deterministic output outputs = text_generator("This is a test", do_sample=False) self.assertEqual( outputs, [ { "generated_text": "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope. oscope. FiliFili@@" } ], ) outputs = text_generator(["This is a test", "This is a second test"]) self.assertEqual( outputs, [ [ { "generated_text": "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope. oscope. FiliFili@@" } ], [ { "generated_text": "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope. oscope. FiliFili@@" } ], ], ) @require_tf def test_small_model_tf(self): text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf") # Using `do_sample=False` to force deterministic output outputs = text_generator("This is a test", do_sample=False) self.assertEqual( outputs, [ { "generated_text": "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵 please," } ], ) outputs = text_generator(["This is a test", "This is a second test"], do_sample=False) self.assertEqual( outputs, [ [ { "generated_text": "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵 please," } ], [ { "generated_text": "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵 please," } ], ], ) def run_pipeline_test(self, model, tokenizer, feature_extractor): text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer) outputs = text_generator("This is a test") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test")) outputs = text_generator("This is a test", return_full_text=False) self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertNotIn("This is a test", outputs[0]["generated_text"]) text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False) outputs = text_generator("This is a test") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertNotIn("This is a test", outputs[0]["generated_text"]) outputs = text_generator("This is a test", return_full_text=True) self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test")) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__: outputs = text_generator("") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) else: with self.assertRaises((ValueError, AssertionError)): outputs = text_generator("")