# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import numpy as np from transformers import AutoProcessor from transformers.file_utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available from transformers.models.wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode from .test_feature_extraction_wav2vec2 import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wav2vec2_with_lm import Wav2Vec2ProcessorWithLM @require_pyctcdecode class Wav2Vec2ProcessorWithLMTest(unittest.TestCase): def setUp(self): vocab = "| a b c d e f g h i j k".split() vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.add_kwargs_tokens_map = { "unk_token": "", "bos_token": "", "eos_token": "", } feature_extractor_map = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16000, "return_attention_mask": False, "do_normalize": True, } self.tmpdirname = tempfile.mkdtemp() self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.feature_extraction_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(feature_extractor_map) + "\n") # load decoder from hub self.decoder_name = "hf-internal-testing/ngram-beam-search-decoder" def get_tokenizer(self, **kwargs_init): kwargs = self.add_kwargs_tokens_map.copy() kwargs.update(kwargs_init) return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return Wav2Vec2FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def get_decoder(self, **kwargs): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) processor.save_pretrained(self.tmpdirname) processor = Wav2Vec2ProcessorWithLM.from_pretrained(self.tmpdirname) # tokenizer self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor) # decoder self.assertEqual(processor.decoder._alphabet.labels, decoder._alphabet.labels) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set, decoder.model_container[decoder._model_key]._unigram_set, ) self.assertIsInstance(processor.decoder, BeamSearchDecoderCTC) def test_save_load_pretrained_additional_features(self): processor = Wav2Vec2ProcessorWithLM( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname) # make sure that error is thrown when decoder alphabet doesn't match processor = Wav2Vec2ProcessorWithLM.from_pretrained( self.tmpdirname, alpha=5.0, beta=3.0, score_boundary=-7.0, unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha, 5.0) self.assertEqual(processor.language_model.beta, 3.0) self.assertEqual(processor.language_model.score_boundary, -7.0) self.assertEqual(processor.language_model.unk_score_offset, 3) def test_load_decoder_tokenizer_mismatch_content(self): tokenizer = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"]) with self.assertRaisesRegex(ValueError, "include"): Wav2Vec2ProcessorWithLM( tokenizer=tokenizer, feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) input_str = "This is a test string" with processor.as_target_processor(): encoded_processor = processor(input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def _get_dummy_logits(self, shape=(2, 10, 16), seed=77): np.random.seed(seed) return np.random.rand(*shape) def test_decoder(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) logits = self._get_dummy_logits(shape=(10, 16), seed=13) decoded_processor = processor.decode(logits) decoded_decoder = decoder.decode_beams(logits)[0] self.assertEqual(decoded_decoder[0], decoded_processor.text) self.assertEqual(" ", decoded_processor.text) self.assertEqual(decoded_decoder[-2], decoded_processor.logit_score) self.assertEqual(decoded_decoder[-1], decoded_processor.lm_score) def test_decoder_batch(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) logits = self._get_dummy_logits() decoded_processor = processor.batch_decode(logits) logits_list = [array for array in logits] pool = get_context("fork").Pool() decoded_beams = decoder.decode_beams_batch(pool, logits_list) texts_decoder, logit_scores_decoder, lm_scores_decoder = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0]) logit_scores_decoder.append(beams[0][-2]) lm_scores_decoder.append(beams[0][-1]) pool.close() self.assertListEqual(texts_decoder, decoded_processor.text) self.assertListEqual([" ", " "], decoded_processor.text) self.assertListEqual(logit_scores_decoder, decoded_processor.logit_score) self.assertListEqual(lm_scores_decoder, decoded_processor.lm_score) def test_decoder_with_params(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) logits = self._get_dummy_logits() beam_width = 20 beam_prune_logp = -20.0 token_min_logp = -4.0 decoded_processor_out = processor.batch_decode( logits, beam_width=beam_width, beam_prune_logp=beam_prune_logp, token_min_logp=token_min_logp, ) decoded_processor = decoded_processor_out.text logits_list = [array for array in logits] pool = get_context("fork").Pool() decoded_decoder_out = decoder.decode_beams_batch( pool, logits_list, beam_width=beam_width, beam_prune_logp=beam_prune_logp, token_min_logp=token_min_logp, ) pool.close() decoded_decoder = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(decoded_decoder, decoded_processor) self.assertListEqual([" ", " "], decoded_processor) def test_decoder_with_params_of_lm(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() decoder = self.get_decoder() processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder) logits = self._get_dummy_logits() alpha = 2.0 beta = 5.0 unk_score_offset = -20.0 lm_score_boundary = True decoded_processor_out = processor.batch_decode( logits, alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary, ) decoded_processor = decoded_processor_out.text logits_list = [array for array in logits] decoder.reset_params( alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary, ) pool = get_context("fork").Pool() decoded_decoder_out = decoder.decode_beams_batch( pool, logits_list, ) pool.close() decoded_decoder = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(decoded_decoder, decoded_processor) self.assertListEqual([" ", " "], decoded_processor) lm_model = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha, 2.0) self.assertEqual(lm_model.beta, 5.0) self.assertEqual(lm_model.unk_score_offset, -20.0) self.assertEqual(lm_model.score_boundary, True) def test_decoder_download_ignores_files(self): processor = Wav2Vec2ProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") language_model = processor.decoder.model_container[processor.decoder._model_key] path_to_cached_dir = Path(language_model._kenlm_model.path.decode("utf-8")).parent.parent.absolute() downloaded_decoder_files = os.listdir(path_to_cached_dir) expected_decoder_files = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(downloaded_decoder_files, expected_decoder_files) def test_decoder_local_files(self): local_dir = snapshot_download("hf-internal-testing/processor_with_lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained(local_dir) language_model = processor.decoder.model_container[processor.decoder._model_key] path_to_cached_dir = Path(language_model._kenlm_model.path.decode("utf-8")).parent.parent.absolute() local_decoder_files = os.listdir(local_dir) expected_decoder_files = os.listdir(path_to_cached_dir) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(local_decoder_files, expected_decoder_files) def test_processor_from_auto_processor(self): processor_wav2vec2 = Wav2Vec2ProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") processor_auto = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm") raw_speech = floats_list((3, 1000)) input_wav2vec2 = processor_wav2vec2(raw_speech, return_tensors="np") input_auto = processor_auto(raw_speech, return_tensors="np") for key in input_wav2vec2.keys(): self.assertAlmostEqual(input_wav2vec2[key].sum(), input_auto[key].sum(), delta=1e-2) logits = self._get_dummy_logits() decoded_wav2vec2 = processor_wav2vec2.batch_decode(logits) decoded_auto = processor_auto.batch_decode(logits) self.assertListEqual(decoded_wav2vec2.text, decoded_auto.text)