import argparse import json from pathlib import Path import torch from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer try: from .utils import calculate_rouge, use_task_specific_params, calculate_bleu_score, trim_batch except ImportError: from utils import calculate_rouge, use_task_specific_params, calculate_bleu_score, trim_batch DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def generate_summaries_or_translations( examples: list, out_file: str, model_name: str, batch_size: int = 8, device: str = DEFAULT_DEVICE, fp16=False, task="summarization", **gen_kwargs, ) -> None: fout = Path(out_file).open("w", encoding="utf-8") model_name = str(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) if fp16: model = model.half() tokenizer = AutoTokenizer.from_pretrained(model_name) # update config with summarization specific params use_task_specific_params(model, task) for batch in tqdm(list(chunks(examples, batch_size))): if "t5" in model_name: batch = [model.config.prefix + text for text in batch] batch = tokenizer(batch, max_length=1024, return_tensors="pt", truncation=True, padding="max_length").to( device ) input_ids, attention_mask = trim_batch(**batch, pad_token_id=tokenizer.pad_token_id) summaries = model.generate(input_ids=input_ids, attention_mask=attention_mask, **gen_kwargs) dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) for hypothesis in dec: fout.write(hypothesis + "\n") fout.flush() def run_generate(): parser = argparse.ArgumentParser() parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.") parser.add_argument("input_path", type=str, help="like cnn_dm/test.source") parser.add_argument("save_path", type=str, help="where to save summaries") parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test_reference_summaries.txt") parser.add_argument("--score_path", type=str, required=False, help="where to save the rouge score in json format") parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.") parser.add_argument("--task", type=str, default="summarization", help="typically translation or summarization") parser.add_argument("--bs", type=int, default=8, required=False, help="batch size") parser.add_argument( "--n_obs", type=int, default=-1, required=False, help="How many observations. Defaults to all." ) parser.add_argument("--fp16", action="store_true") args = parser.parse_args() examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()] if args.n_obs > 0: examples = examples[: args.n_obs] generate_summaries_or_translations( examples, args.save_path, args.model_name, batch_size=args.bs, device=args.device, fp16=args.fp16, task=args.task, ) if args.reference_path is None: return # Compute scores score_fn = calculate_bleu_score if "translation" in args.task else calculate_rouge output_lns = [x.rstrip() for x in open(args.save_path).readlines()] reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)] scores: dict = score_fn(output_lns, reference_lns) if args.score_path is not None: json.dump(scores, open(args.score_path, "w+")) return scores if __name__ == "__main__": run_generate()