PyTorch TensorFlow
# XLM [XLM](https://huggingface.co/papers/1901.07291) demonstrates cross-lingual pretraining with two approaches, unsupervised training on a single language and supervised training on more than one language with a cross-lingual language model objective. The XLM model supports the causal language modeling objective, masked language modeling, and translation language modeling (an extension of the [BERT](./bert)) masked language modeling objective to multiple language inputs). You can find all the original XLM checkpoints under the [Facebook AI community](https://huggingface.co/FacebookAI?search_models=xlm-mlm) organization. > [!TIP] > Click on the XLM models in the right sidebar for more examples of how to apply XLM to different cross-lingual tasks like classification, translation, and question answering. The example below demonstrates how to predict the `` token with [`Pipeline`], [`AutoModel`] and from the command line. ```python import torch from transformers import pipeline pipeline = pipeline( task="fill-mask", model="facebook/xlm-roberta-xl", torch_dtype=torch.float16, device=0 ) pipeline("Bonjour, je suis un modèle .") ``` ```python import torch from transformers import AutoModelForMaskedLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "FacebookAI/xlm-mlm-en-2048", ) model = AutoModelForMaskedLM.from_pretrained( "FacebookAI/xlm-mlm-en-2048", torch_dtype=torch.float16, device_map="auto", ) inputs = tokenizer("Hello, I'm a model.", return_tensors="pt").to("cuda") with torch.no_grad(): outputs = model(**inputs) predictions = outputs.logits.argmax(dim=-1) predicted_token = tokenizer.decode(predictions[0][inputs["input_ids"][0] == tokenizer.mask_token_id]) print(f"Predicted token: {predicted_token}") ``` ```bash echo -e "Plants create through a process known as photosynthesis." | transformers-cli run --task fill-mask --model FacebookAI/xlm-mlm-en-2048 --device 0 ``` ## XLMConfig [[autodoc]] XLMConfig ## XLMTokenizer [[autodoc]] XLMTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## XLM specific outputs [[autodoc]] models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput ## XLMModel [[autodoc]] XLMModel - forward ## XLMWithLMHeadModel [[autodoc]] XLMWithLMHeadModel - forward ## XLMForSequenceClassification [[autodoc]] XLMForSequenceClassification - forward ## XLMForMultipleChoice [[autodoc]] XLMForMultipleChoice - forward ## XLMForTokenClassification [[autodoc]] XLMForTokenClassification - forward ## XLMForQuestionAnsweringSimple [[autodoc]] XLMForQuestionAnsweringSimple - forward ## XLMForQuestionAnswering [[autodoc]] XLMForQuestionAnswering - forward ## TFXLMModel [[autodoc]] TFXLMModel - call ## TFXLMWithLMHeadModel [[autodoc]] TFXLMWithLMHeadModel - call ## TFXLMForSequenceClassification [[autodoc]] TFXLMForSequenceClassification - call ## TFXLMForMultipleChoice [[autodoc]] TFXLMForMultipleChoice - call ## TFXLMForTokenClassification [[autodoc]] TFXLMForTokenClassification - call ## TFXLMForQuestionAnsweringSimple [[autodoc]] TFXLMForQuestionAnsweringSimple - call