# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from examples/modular-transformers/modular_new_task_model.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_new_task_model.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 from dataclasses import dataclass from typing import ClassVar, List, Optional, Tuple, Union import torch from torch import nn from ...cache_utils import Cache, HybridCache, StaticCache from ...generation import GenerationMixin from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ..auto import AutoModel, AutoModelForCausalLM from .configuration_new_task_model import NewTaskModelConfig _CONFIG_FOR_DOC = "NewTaskModelConfig" @dataclass class NewTaskModelCausalLMOutputWithPast(ModelOutput): """ Base class for NewTaskModelcausal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder after projecting last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None class NewTaskModelMultiModalProjector(nn.Module): def __init__(self, config: NewTaskModelConfig): super().__init__() self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True) def forward(self, image_features): hidden_states = self.linear(image_features) return hidden_states NEW_TASK_MODEL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`NewTaskModelConfig`] or [`NewTaskModelVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", NEW_TASK_MODEL_START_DOCSTRING, ) class NewTaskModelPreTrainedModel(PreTrainedModel): config_class = NewTaskModelConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["NewTaskModelMultiModalProjector"] _skip_keys_device_placement = "past_key_values" _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): # important: this ported version of NewTaskModelisn't meant for training from scratch - only # inference and fine-tuning std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() NEW_TASK_MODEL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SiglipImageProcessor.__call__`] for details ([]`NewTaskModelProcessor`] uses [`SiglipImageProcessor`] for processing images). attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( """The NEW_TASK_MODEL model which consists of a vision backbone and a language model.""", NEW_TASK_MODEL_START_DOCSTRING, ) class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin): main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related def __init__(self, config): super().__init__(config) self.vision_tower = AutoModel.from_config(config=config.vision_config) self.multi_modal_projector = NewTaskModelMultiModalProjector(config) self.vocab_size = config.text_config.vocab_size language_model = AutoModelForCausalLM.from_config(config=config.text_config) if language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys] self.language_model = language_model self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.embedding_dim = self.config.embedding_dim self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim) if self.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys] self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def _update_causal_mask( self, attention_mask, token_type_ids, past_key_values, cache_position, input_ids=None, inputs_embeds=None, is_training: bool = False, ): if self.config.text_config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None using_static_cache = isinstance(past_key_values, StaticCache) min_dtype = torch.finfo(self.dtype).min inputs_lead_dim = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0] sequence_length = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() elif isinstance(past_key_values, HybridCache): target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[0] + sequence_length + 1 ) if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. return attention_mask causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device ) # Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below if sequence_length != 1: if is_training: causal_mask = torch.triu(causal_mask, diagonal=1) else: causal_mask[:, :sequence_length] = 0.0 causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) # we are training thus we need to create a full mask on the image + prefix but causal on suffix if is_training: causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0 ) return causal_mask def get_image_features(self, pixel_values: torch.FloatTensor): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) The tensors corresponding to the input images. Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ image_outputs = self.vision_tower(pixel_values) selected_image_feature = image_outputs.last_hidden_state image_features = self.multi_modal_projector(selected_image_feature) image_features = image_features / (self.config.text_config.hidden_size**0.5) return image_features @add_start_docstrings_to_model_forward(NEW_TASK_MODEL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=NewTaskModelCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None, token_type_ids: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, num_logits_to_keep: int = 0, ) -> Union[Tuple, NewTaskModelCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, NewTaskModelForNewTask >>> model = NewTaskModelForNewTask.from_pretrained("google/NewTaskModel-test-224px-hf") >>> processor = AutoProcessor.from_pretrained("google/NewTaskModel-test-224px-hf") >>> prompt = "answer en Where is the cow standing?" >>> url = "https://huggingface.co/gv-hf/NewTaskModel-test-224px-hf/resolve/main/cow_beach_1.png" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=30) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "answer en Where is the cow standing?\nbeach" ``` Returns: """ vlm_outputs = super().forward( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, token_type_ids=token_type_ids, cache_position=cache_position, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=True, return_dict=True, num_logits_to_keep=num_logits_to_keep, ) last_hidden_states = vlm_outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size) proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim) # L2 normalization embeddings = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim) embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim) return (embeddings,) + vlm_outputs def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, cache_position=None, position_ids=None, pixel_values=None, attention_mask=None, token_type_ids=None, use_cache=True, num_logits_to_keep=None, labels=None, **kwargs, ): # Overwritten -- custom `position_ids` and `pixel_values` handling model_inputs = self.language_model.prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, cache_position=cache_position, use_cache=use_cache, num_logits_to_keep=num_logits_to_keep, token_type_ids=token_type_ids, **kwargs, ) # position_ids in NewTaskModel are 1-indexed if model_inputs.get("position_ids") is not None: model_inputs["position_ids"] += 1 # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always if cache_position[0] == 0: model_inputs["pixel_values"] = pixel_values is_training = token_type_ids is not None and labels is not None if cache_position[0] == 0 and isinstance(past_key_values, HybridCache): causal_mask = self._update_causal_mask( attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training ) model_inputs["attention_mask"] = causal_mask return model_inputs def resize_token_embeddings( self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None, mean_resizing=True ) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing) # Update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings self.config.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds