# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import json import os import tempfile import unittest from pathlib import Path from transformers import is_torch_available from transformers.model_debugging_utils import model_addition_debugger_context if is_torch_available(): import torch from torch import nn class ToyModel(nn.Module): def __init__(self): super().__init__() self.embed = nn.Embedding(10, 4) self.linear_1 = nn.Linear(4, 8) self.linear_2 = nn.Linear(8, 2) self.act = nn.ReLU() def forward(self, input_ids: str): hidden_states = self.embed(input_ids).mean(dim=1) hidden_states = self.act(self.linear_1(hidden_states)) return self.linear_2(hidden_states) class TestModelAdditionDebugger(unittest.TestCase): def setUp(self): self.model = ToyModel() self.inputs = {"input_ids": torch.randint(0, 10, (1, 3))} def tearDown(self): gc.collect() def test_debugger_outputs(self): with tempfile.TemporaryDirectory() as tmpdir: with model_addition_debugger_context(self.model, debug_path=str(tmpdir)): _ = self.model.forward(**self.inputs) base = f"{self.model.__class__.__name__}_debug_tree" summary = Path(os.path.join(tmpdir, f"{base}_SUMMARY.json")) full = Path(os.path.join(tmpdir, f"{base}_FULL_TENSORS.json")) self.assertTrue(os.path.isfile(summary) and os.path.isfile(full)) data = json.loads(summary.read_text()) self.assertTrue({"module_path", "inputs", "children"} <= data.keys()) self.assertTrue(data["children"]) class ToyLayer(nn.Module): def __init__(self, layer_index): super().__init__() self.layer_index = layer_index self.layer_operation = nn.Linear(4, 4) def forward(self, hidden_states): return self.layer_operation(hidden_states) class ToyModelWithLayers(nn.Module): def __init__(self): super().__init__() self.input_proj = nn.Linear(4, 4) self.layers = nn.ModuleList([ToyLayer(layer_index) for layer_index in range(6)]) self.output_proj = nn.Linear(4, 2) def forward(self, x): x = self.input_proj(x) for layer in self.layers: x = layer(x) return self.output_proj(x) class TestModelWithLayers(unittest.TestCase): def setUp(self): self.inputs = {"input_ids": torch.randint(0, 10, (1, 3))} self.model_with_layers = ToyModelWithLayers() self.dense_input = {"x": torch.randn(1, 4)} def tearDown(self): gc.collect() def test_layer_pruning_behavior(self): # No pruning: expect all 6 layers with tempfile.TemporaryDirectory() as tmpdir: with model_addition_debugger_context(self.model_with_layers, debug_path=tmpdir, do_prune_layers=False): _ = self.model_with_layers(**self.dense_input) summary_path = os.path.join(tmpdir, "ToyModelWithLayers_debug_tree_SUMMARY.json") with open(summary_path) as f: data = json.load(f) self.assertEqual(set(data.keys()), {"module_path", "inputs", "children"}) for layer_index in range(6): self.assertEqual( data["children"][layer_index + 1]["module_path"], f"ToyModelWithLayers.layers.{int(layer_index)}", ) # Pruning: expect only 2 layers (0 and 5) with tempfile.TemporaryDirectory() as tmpdir: with model_addition_debugger_context(self.model_with_layers, debug_path=tmpdir, do_prune_layers=True): _ = self.model_with_layers(**self.dense_input) summary_path = os.path.join(tmpdir, "ToyModelWithLayers_debug_tree_SUMMARY.json") with open(summary_path) as f: data = json.load(f) self.assertEqual(set(data.keys()), {"module_path", "inputs", "children"}) self.assertEqual(data["children"][1]["module_path"], "ToyModelWithLayers.layers.0") self.assertEqual(data["children"][2]["module_path"], "ToyModelWithLayers.layers.5")