# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from transformers.models.wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES from transformers.utils import FEATURE_EXTRACTOR_NAME from ...test_processing_common import ProcessorTesterMixin from .test_feature_extraction_wav2vec2 import floats_list class Wav2Vec2ProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = Wav2Vec2Processor audio_input_name = "input_values" text_input_name = "labels" @classmethod def setUpClass(cls): vocab = " | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ") vocab_tokens = dict(zip(vocab, range(len(vocab)))) cls.add_kwargs_tokens_map = { "pad_token": "", "unk_token": "", "bos_token": "", "eos_token": "", } feature_extractor_map = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16000, "return_attention_mask": False, "do_normalize": True, } cls.tmpdirname = tempfile.mkdtemp() cls.vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) cls.feature_extraction_file = os.path.join(cls.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(cls.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(cls.feature_extraction_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(feature_extractor_map) + "\n") tokenizer = cls.get_tokenizer() tokenizer.save_pretrained(cls.tmpdirname) @classmethod def get_tokenizer(cls, **kwargs_init): kwargs = cls.add_kwargs_tokens_map.copy() kwargs.update(kwargs_init) return Wav2Vec2CTCTokenizer.from_pretrained(cls.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return Wav2Vec2FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname, ignore_errors=True) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) with tempfile.TemporaryDirectory() as tmpdir: processor.save_pretrained(tmpdir) processor = Wav2Vec2Processor.from_pretrained(tmpdir) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor) def test_save_load_pretrained_additional_features(self): with tempfile.TemporaryDirectory() as tmpdir: processor = Wav2Vec2Processor( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(tmpdir) tokenizer_add_kwargs = Wav2Vec2CTCTokenizer.from_pretrained( tmpdir, **(self.add_kwargs_tokens_map | {"bos_token": "(BOS)", "eos_token": "(EOS)"}) ) feature_extractor_add_kwargs = Wav2Vec2FeatureExtractor.from_pretrained( tmpdir, do_normalize=False, padding_value=1.0 ) processor = Wav2Vec2Processor.from_pretrained( tmpdir, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", )