# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ( ImageProcessingTestMixin, prepare_image_inputs, ) if is_torch_available(): import torch from transformers.models.superpoint.modeling_superpoint import SuperPointKeypointDescriptionOutput if is_vision_available(): from transformers import SuperPointImageProcessor class SuperPointImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_grayscale=True, ): size = size if size is not None else {"height": 480, "width": 640} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_grayscale = do_grayscale def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_grayscale": self.do_grayscale, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) def prepare_keypoint_detection_output(self, pixel_values): max_number_keypoints = 50 batch_size = len(pixel_values) mask = torch.zeros((batch_size, max_number_keypoints)) keypoints = torch.zeros((batch_size, max_number_keypoints, 2)) scores = torch.zeros((batch_size, max_number_keypoints)) descriptors = torch.zeros((batch_size, max_number_keypoints, 16)) for i in range(batch_size): random_number_keypoints = np.random.randint(0, max_number_keypoints) mask[i, :random_number_keypoints] = 1 keypoints[i, :random_number_keypoints] = torch.rand((random_number_keypoints, 2)) scores[i, :random_number_keypoints] = torch.rand((random_number_keypoints,)) descriptors[i, :random_number_keypoints] = torch.rand((random_number_keypoints, 16)) return SuperPointKeypointDescriptionOutput( loss=None, keypoints=keypoints, scores=scores, descriptors=descriptors, mask=mask, hidden_states=None ) @require_torch @require_vision class SuperPointImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = SuperPointImageProcessor if is_vision_available() else None def setUp(self) -> None: super().setUp() self.image_processor_tester = SuperPointImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processing(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "do_grayscale")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 480, "width": 640}) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size={"height": 42, "width": 42} ) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) @unittest.skip(reason="SuperPointImageProcessor is always supposed to return a grayscaled image") def test_call_numpy_4_channels(self): pass def test_input_image_properly_converted_to_grayscale(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs() pre_processed_images = image_processor.preprocess(image_inputs) for image in pre_processed_images["pixel_values"]: self.assertTrue(np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...])) @require_torch def test_post_processing_keypoint_detection(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs() pre_processed_images = image_processor.preprocess(image_inputs, return_tensors="pt") outputs = self.image_processor_tester.prepare_keypoint_detection_output(**pre_processed_images) def check_post_processed_output(post_processed_output, image_size): for post_processed_output, image_size in zip(post_processed_output, image_size): self.assertTrue("keypoints" in post_processed_output) self.assertTrue("descriptors" in post_processed_output) self.assertTrue("scores" in post_processed_output) keypoints = post_processed_output["keypoints"] all_below_image_size = torch.all(keypoints[:, 0] <= image_size[1]) and torch.all( keypoints[:, 1] <= image_size[0] ) all_above_zero = torch.all(keypoints[:, 0] >= 0) and torch.all(keypoints[:, 1] >= 0) self.assertTrue(all_below_image_size) self.assertTrue(all_above_zero) tuple_image_sizes = [(image.size[0], image.size[1]) for image in image_inputs] tuple_post_processed_outputs = image_processor.post_process_keypoint_detection(outputs, tuple_image_sizes) check_post_processed_output(tuple_post_processed_outputs, tuple_image_sizes) tensor_image_sizes = torch.tensor([image.size for image in image_inputs]).flip(1) tensor_post_processed_outputs = image_processor.post_process_keypoint_detection(outputs, tensor_image_sizes) check_post_processed_output(tensor_post_processed_outputs, tensor_image_sizes)