# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from functools import lru_cache from transformers.models.esm.tokenization_esm import VOCAB_FILES_NAMES, EsmTokenizer from transformers.testing_utils import require_tokenizers from transformers.tokenization_utils import PreTrainedTokenizer from transformers.tokenization_utils_base import PreTrainedTokenizerBase from ...test_tokenization_common import use_cache_if_possible @require_tokenizers class ESMTokenizationTest(unittest.TestCase): tokenizer_class = EsmTokenizer @classmethod def setUpClass(cls): super().setUpClass() cls.tmpdirname = tempfile.mkdtemp() vocab_tokens: list[str] = ["", "", "", "", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "", ""] # fmt: skip cls.vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(cls.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_tokenizers(cls, **kwargs) -> list[PreTrainedTokenizerBase]: return [cls.get_tokenizer(**kwargs)] @classmethod @use_cache_if_possible @lru_cache(maxsize=64) def get_tokenizer(cls, pretrained_name=None, **kwargs) -> PreTrainedTokenizer: pretrained_name = pretrained_name or cls.tmpdirname return cls.tokenizer_class.from_pretrained(pretrained_name, **kwargs) def test_tokenizer_single_example(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("LAGVS") self.assertListEqual(tokens, ["L", "A", "G", "V", "S"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [4, 5, 6, 7, 8]) def test_tokenizer_encode_single(self): tokenizer = self.tokenizer_class(self.vocab_file) seq = "LAGVS" self.assertListEqual(tokenizer.encode(seq), [0, 4, 5, 6, 7, 8, 2]) def test_tokenizer_call_no_pad(self): tokenizer = self.tokenizer_class(self.vocab_file) seq_batch = ["LAGVS", "WCB"] tokens_batch = tokenizer(seq_batch, padding=False)["input_ids"] self.assertListEqual(tokens_batch, [[0, 4, 5, 6, 7, 8, 2], [0, 22, 23, 25, 2]]) def test_tokenizer_call_pad(self): tokenizer = self.tokenizer_class(self.vocab_file) seq_batch = ["LAGVS", "WCB"] tokens_batch = tokenizer(seq_batch, padding=True)["input_ids"] self.assertListEqual(tokens_batch, [[0, 4, 5, 6, 7, 8, 2], [0, 22, 23, 25, 2, 1, 1]]) def test_tokenize_special_tokens(self): """Test `tokenize` with special tokens.""" tokenizers = self.get_tokenizers(fast=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): SPECIAL_TOKEN_1 = "" SPECIAL_TOKEN_2 = "" token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) self.assertEqual(len(token_1), 1) self.assertEqual(len(token_2), 1) self.assertEqual(token_1[0], SPECIAL_TOKEN_1) self.assertEqual(token_2[0], SPECIAL_TOKEN_2) def test_add_tokens(self): tokenizer = self.tokenizer_class(self.vocab_file) vocab_size = len(tokenizer) self.assertEqual(tokenizer.add_tokens(""), 0) self.assertEqual(tokenizer.add_tokens("testoken"), 1) self.assertEqual(tokenizer.add_tokens(["testoken1", "testtoken2"]), 2) self.assertEqual(len(tokenizer), vocab_size + 3) self.assertEqual(tokenizer.add_special_tokens({}), 0) self.assertEqual(tokenizer.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2) self.assertRaises(AssertionError, tokenizer.add_special_tokens, {"additional_special_tokens": ""}) self.assertEqual(tokenizer.add_special_tokens({"additional_special_tokens": [""]}), 1) self.assertEqual( tokenizer.add_special_tokens({"additional_special_tokens": ["", ""]}), 2 ) self.assertIn("", tokenizer.special_tokens_map["additional_special_tokens"]) self.assertIsInstance(tokenizer.special_tokens_map["additional_special_tokens"], list) self.assertGreaterEqual(len(tokenizer.special_tokens_map["additional_special_tokens"]), 2) self.assertEqual(len(tokenizer), vocab_size + 8)