# coding=utf-8 # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import requests from transformers import PixtralProcessor from transformers.testing_utils import require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image @require_vision class Mistral3ProcessorTest(ProcessorTesterMixin, unittest.TestCase): """This tests Pixtral processor with the new `spatial_merge_size` argument in Mistral3.""" processor_class = PixtralProcessor @classmethod def setUpClass(cls): cls.url_0 = "https://www.ilankelman.org/stopsigns/australia.jpg" cls.image_0 = Image.open(requests.get(cls.url_0, stream=True).raw) cls.url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg" cls.image_1 = Image.open(requests.get(cls.url_1, stream=True).raw) cls.url_2 = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg" cls.image_2 = Image.open(requests.get(cls.url_2, stream=True).raw) def setUp(self): self.tmpdirname = tempfile.mkdtemp() processor = self.processor_class.from_pretrained("mistralai/Mistral-Small-3.1-24B-Instruct-2503") processor.save_pretrained(self.tmpdirname) def get_processor(self): return self.processor_class.from_pretrained(self.tmpdirname) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_chat_template_accepts_processing_kwargs(self): # override to use slow image processor to return numpy arrays processor = self.processor_class.from_pretrained(self.tmpdirname, use_fast=False) if processor.chat_template is None: self.skipTest("Processor has no chat template") messages = [ [ { "role": "user", "content": [ {"type": "text", "text": "What is shown in this image?"}, ], }, ] ] formatted_prompt_tokenized = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, padding="max_length", truncation=True, max_length=50, ) self.assertEqual(len(formatted_prompt_tokenized[0]), 50) formatted_prompt_tokenized = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, truncation=True, max_length=5, ) self.assertEqual(len(formatted_prompt_tokenized[0]), 5) # Now test the ability to return dict messages[0][0]["content"].append( {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"} ) out_dict = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, do_rescale=True, rescale_factor=-1, return_tensors="np", ) self.assertLessEqual(out_dict[self.images_input_name][0][0].mean(), 0) def test_chat_template(self): processor = self.processor_class.from_pretrained(self.tmpdirname, use_fast=False) expected_prompt = "[SYSTEM_PROMPT][/SYSTEM_PROMPT][INST][IMG]What is shown in this image?[/INST]" messages = [ { "role": "system", "content": "", }, { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) self.assertEqual(expected_prompt, formatted_prompt) def test_image_token_filling(self): processor = self.processor_class.from_pretrained(self.tmpdirname) # Important to check with non square image image = torch.randint(0, 2, (3, 500, 316)) expected_image_tokens = 198 image_token_index = 10 messages = [ { "role": "system", "content": "", }, { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] inputs = processor( text=[processor.apply_chat_template(messages)], images=[image], return_tensors="pt", ) image_tokens = (inputs["input_ids"] == image_token_index).sum().item() self.assertEqual(expected_image_tokens, image_tokens) def test_processor_with_single_image(self): processor = self.processor_class.from_pretrained(self.tmpdirname) prompt_string = "USER: [IMG]\nWhat's the content of the image? ASSISTANT:" # Make small for checking image token expansion processor.image_processor.size = {"longest_edge": 30} processor.patch_size = 6 # Test passing in an image inputs_image = processor(text=prompt_string, images=self.image_0, return_tensors="pt") self.assertIn("input_ids", inputs_image) self.assertTrue(len(inputs_image["input_ids"]) == 1) self.assertIsInstance(inputs_image["input_ids"], torch.Tensor) self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor) self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([1, 3, 24, 30])) # fmt: off input_ids = inputs_image["input_ids"] self.assertEqual( input_ids[0].tolist(), # Equivalent to "USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the content of the image? ASSISTANT:" [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 4701, 1307, 1278, 3937, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on # Test passing in a url inputs_url = processor(text=prompt_string, images=self.url_0, return_tensors="pt") self.assertIn("input_ids", inputs_url) self.assertTrue(len(inputs_url["input_ids"]) == 1) self.assertIsInstance(inputs_url["input_ids"], torch.Tensor) self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor) self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([1, 3, 24, 30])) # fmt: off input_ids = inputs_url["input_ids"] self.assertEqual( input_ids[0].tolist(), # Equivalent to "USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the content of the image? ASSISTANT:" [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 4701, 1307, 1278, 3937, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on # Test passing inputs as a single list inputs_image = processor(text=prompt_string, images=[self.image_0], return_tensors="pt") self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([1, 3, 24, 30])) # fmt: off self.assertEqual( inputs_image["input_ids"][0].tolist(), [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 4701, 1307, 1278, 3937, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on # Test as nested single list inputs_image = processor(text=prompt_string, images=[[self.image_0]], return_tensors="pt") self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([1, 3, 24, 30])) # fmt: off self.assertEqual( inputs_image["input_ids"][0].tolist(), [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 4701, 1307, 1278, 3937, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on def test_processor_with_multiple_images_single_list(self): processor = self.processor_class.from_pretrained(self.tmpdirname) prompt_string = "USER: [IMG][IMG]\nWhat's the difference between these two images? ASSISTANT:" # Make small for checking image token expansion processor.image_processor.size = {"longest_edge": 30} processor.patch_size = 6 # Test passing in an image inputs_image = processor(text=prompt_string, images=[self.image_0, self.image_1], return_tensors="pt") self.assertIn("input_ids", inputs_image) self.assertTrue(len(inputs_image["input_ids"]) == 1) self.assertIsInstance(inputs_image["input_ids"], torch.Tensor) self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor) self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([2, 3, 24, 30])) # fmt: off input_ids = inputs_image["input_ids"] self.assertEqual( input_ids[0].tolist(), # Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"] [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on # Test passing in a url inputs_url = processor(text=prompt_string, images=[self.url_0, self.url_1], return_tensors="pt") self.assertIn("input_ids", inputs_url) self.assertTrue(len(inputs_url["input_ids"]) == 1) self.assertIsInstance(inputs_url["input_ids"], torch.Tensor) self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor) self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([2, 3, 24, 30])) # fmt: off input_ids = inputs_url["input_ids"] self.assertEqual( input_ids[0].tolist(), # Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"] [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on # Test passing in as a nested list inputs_url = processor(text=prompt_string, images=[[self.image_0, self.image_1]], return_tensors="pt") self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([2, 3, 24, 30])) # fmt: off self.assertEqual( inputs_url["input_ids"][0].tolist(), [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on def test_processor_with_multiple_images_multiple_lists(self): processor = self.processor_class.from_pretrained(self.tmpdirname) prompt_string = [ "USER: [IMG][IMG]\nWhat's the difference between these two images? ASSISTANT:", "USER: [IMG]\nWhat's the content of the image? ASSISTANT:", ] processor.tokenizer.pad_token = "" image_inputs = [[self.image_0, self.image_1], [self.image_2]] # Make small for checking image token expansion processor.image_processor.size = {"longest_edge": 30} processor.patch_size = 6 # Test passing in an image inputs_image = processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True) self.assertIn("input_ids", inputs_image) self.assertTrue(len(inputs_image["input_ids"]) == 2) self.assertIsInstance(inputs_image["input_ids"], torch.Tensor) self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor) self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([3, 3, 30, 30])) # fmt: off input_ids = inputs_image["input_ids"] self.assertEqual( input_ids[0].tolist(), # Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"] [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on # Test passing in a url inputs_url = processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True) self.assertIn("input_ids", inputs_url) self.assertTrue(len(inputs_url["input_ids"]) == 2) self.assertIsInstance(inputs_url["input_ids"], torch.Tensor) self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor) self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([3, 3, 30, 30])) # fmt: off input_ids = inputs_url["input_ids"] self.assertEqual( input_ids[0].tolist(), # Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"] [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on # Test passing as a single flat list inputs_image = processor( text=prompt_string, images=[self.image_0, self.image_1, self.image_2], return_tensors="pt", padding=True ) self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([3, 3, 30, 30])) # fmt: off self.assertEqual( inputs_image["input_ids"][0].tolist(), [1, 21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058] ) # fmt: on def test_processor_returns_full_length_batches(self): # to avoid https://github.com/huggingface/transformers/issues/34204 processor = self.processor_class.from_pretrained(self.tmpdirname) prompt_string = [ "USER: [IMG]\nWhat's the content of the image? ASSISTANT:", ] * 5 processor.tokenizer.pad_token = "" image_inputs = [[self.image_0]] * 5 # Make small for checking image token expansion processor.image_processor.size = {"longest_edge": 30} processor.patch_size = 6 # Test passing in an image inputs_image = processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True) self.assertIn("input_ids", inputs_image) self.assertTrue(len(inputs_image["input_ids"]) == 5)