import argparse from pathlib import Path import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, BartTokenizer DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def generate_summaries(lns, out_file, batch_size=8, device=DEFAULT_DEVICE): fout = Path(out_file).open("w") model = BartForConditionalGeneration.from_pretrained("bart-large-cnn", output_past=True,).to(device) tokenizer = BartTokenizer.from_pretrained("bart-large") for batch in tqdm(list(chunks(lns, batch_size))): dct = tokenizer.batch_encode_plus(batch, max_length=1024, return_tensors="pt", pad_to_max_length=True) summaries = model.generate( input_ids=dct["input_ids"].to(device), attention_mask=dct["attention_mask"].to(device), num_beams=4, length_penalty=2.0, max_length=142, # +2 from original because we start at step=1 and stop before max_length min_length=56, # +1 from original because we start at step=1 no_repeat_ngram_size=3, early_stopping=True, do_sample=False, ) dec = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summaries] for hypothesis in dec: fout.write(hypothesis + "\n") fout.flush() def _run_generate(): parser = argparse.ArgumentParser() parser.add_argument( "source_path", type=str, help="like cnn_dm/test.source", ) parser.add_argument( "output_path", type=str, help="where to save summaries", ) parser.add_argument( "--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.", ) parser.add_argument( "--bs", type=int, default=8, required=False, help="batch size: how many to summarize at a time", ) args = parser.parse_args() lns = [" " + x.rstrip() for x in open(args.source_path).readlines()] generate_summaries(lns, args.output_path, batch_size=args.bs, device=args.device) if __name__ == "__main__": _run_generate()