# coding=utf-8 # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Phi model.""" import unittest from parameterized import parameterized from transformers import PhiConfig, is_torch_available, set_seed from transformers.testing_utils import ( require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, PhiForCausalLM, PhiForSequenceClassification, PhiForTokenClassification, PhiModel, ) from transformers.models.phi.modeling_phi import PhiRotaryEmbedding class PhiModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return PhiConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = PhiModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = PhiModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = PhiForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = PhiForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class PhiModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (PhiModel, PhiForCausalLM, PhiForSequenceClassification, PhiForTokenClassification) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": PhiModel, "text-classification": PhiForSequenceClassification, "text-generation": PhiForCausalLM, "token-classification": PhiForTokenClassification, "zero-shot": PhiForSequenceClassification, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79292/workflows/fa2ba644-8953-44a6-8f67-ccd69ca6a476/jobs/1012905 def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): return True # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.setUp with Llama->Phi def setUp(self): self.model_tester = PhiModelTester(self) self.config_tester = ConfigTester(self, config_class=PhiConfig, hidden_size=37) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_config def test_config(self): self.config_tester.run_common_tests() # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model with Llama->Phi,llama->phi def test_phi_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = PhiForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_single_label with Llama->Phi,llama->phi def test_phi_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = PhiForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_multi_label with Llama->Phi,llama->phi def test_phi_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = PhiForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @parameterized.expand([("linear",), ("dynamic",)]) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model_rope_scaling_from_config with Llama->Phi def test_model_rope_scaling_from_config(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = PhiModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = PhiModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) # Copied from tests.models.gpt_neox.test_modeling_gpt_neox.GPTNeoXModelTest.test_model_rope_scaling with GPTNeoX->Phi def test_model_rope_scaling(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() scaling_factor = 10 short_input_length = 10 long_input_length = int(config.max_position_embeddings * 1.5) # Inputs x = torch.randn( 1, dtype=torch.float32, device=torch_device ) # used exclusively to get the dtype and the device position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device) position_ids_short = position_ids_short.unsqueeze(0) position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device) position_ids_long = position_ids_long.unsqueeze(0) # Sanity check original RoPE original_rope = PhiRotaryEmbedding(config).to(torch_device) original_cos_short, original_sin_short = original_rope(x, position_ids_short) original_cos_long, original_sin_long = original_rope(x, position_ids_long) torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :]) torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :]) # Sanity check linear RoPE scaling # New position "x" should match original position with index "x/scaling_factor" config.rope_scaling = {"type": "linear", "factor": scaling_factor} linear_scaling_rope = PhiRotaryEmbedding(config).to(torch_device) linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short) linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long) torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :]) torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :]) for new_position in range(0, long_input_length, scaling_factor): original_position = int(new_position // scaling_factor) torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :]) torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :]) # Sanity check Dynamic NTK RoPE scaling # Scaling should only be observed after a long input is fed. We can observe that the frequencies increase # with scaling_factor (or that `inv_freq` decreases) config.rope_scaling = {"type": "dynamic", "factor": scaling_factor} ntk_scaling_rope = PhiRotaryEmbedding(config).to(torch_device) ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short) ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long) torch.testing.assert_close(ntk_cos_short, original_cos_short) torch.testing.assert_close(ntk_sin_short, original_sin_short) with self.assertRaises(AssertionError): torch.testing.assert_close(ntk_cos_long, original_cos_long) with self.assertRaises(AssertionError): torch.testing.assert_close(ntk_sin_long, original_sin_long) self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all()) @slow @require_torch class PhiIntegrationTest(unittest.TestCase): def test_model_phi_1_logits(self): input_ids = { "input_ids": torch.tensor( [[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device ) } model = PhiForCausalLM.from_pretrained("microsoft/phi-1").to(torch_device) model.eval() output = model(**input_ids).logits EXPECTED_OUTPUT = torch.tensor([[2.2671, 6.7684, -2.0107, -1.2440, -1.5335, -2.3828, 6.9186, 6.4245, 3.1548, 0.9998, 0.0760, 4.4653, 4.9857, 4.2956, 1.2308, -1.4178, 0.1361, 0.5191, -0.5699, -2.2201, -3.0750, -3.9600, -4.5936, -3.7394, -2.7777, 6.1874, -0.4148, -1.5684, -0.5967, 0.2395], [1.7004, 4.0383, 0.0546, 0.4530, -0.3619, -0.9021, 1.8355, 1.3587, 1.2406, 2.5775, -0.8834, 5.1910, 4.2565, 4.1406, 3.0752, -0.9099, 1.1595, 0.0264, 0.3243, -1.1803, -1.3945, -2.1406, -3.9939, -1.4438, -2.9546, 3.9204, 1.0851, -1.0598, -1.7819, -0.4827]]).to(torch_device) # fmt: skip torch.testing.assert_close(EXPECTED_OUTPUT, output[0, :2, :30], rtol=1e-4, atol=1e-4) def test_model_phi_1_5_logits(self): input_ids = { "input_ids": torch.tensor( [[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device ) } model = PhiForCausalLM.from_pretrained("microsoft/phi-1_5").to(torch_device) model.eval() output = model(**input_ids).logits EXPECTED_OUTPUT = torch.tensor([[12.2922, 13.3507, 8.6963, 9.1355, 9.3502, 9.2667, 14.2027, 13.1363, 13.5446, 11.1337, 9.9279, 16.7195, 13.0768, 14.9141, 11.9965, 8.0233, 10.3129, 10.6118, 10.0204, 9.3827, 8.8344, 8.2806, 8.0153, 8.0540, 7.0964, 16.5743, 11.1256, 9.6987, 11.4770, 10.5440], [12.3323, 14.6050, 8.9986, 8.1580, 9.5654, 6.6728, 12.5966, 12.6662, 12.2784, 11.7522, 8.2039, 16.3102, 11.2203, 13.6088, 12.0125, 9.1021, 9.8216, 10.0987, 9.0926, 8.4260, 8.8009, 7.6547, 6.8075, 7.7881, 7.4501, 15.7451, 10.5053, 8.3129, 10.0027, 9.2612]]).to(torch_device) # fmt: skip torch.testing.assert_close(EXPECTED_OUTPUT, output[0, :2, :30], rtol=1e-4, atol=1e-4) def test_model_phi_2_logits(self): input_ids = { "input_ids": torch.tensor( [[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device ) } model = PhiForCausalLM.from_pretrained("microsoft/phi-2").to(torch_device) model.eval() output = model(**input_ids).logits EXPECTED_OUTPUT = torch.tensor([[6.4830, 6.1644, 3.4055, 2.2848, 5.4654, 2.8360, 5.5975, 5.5391, 7.3101, 4.2498, 2.5913, 10.3885, 6.4359, 8.7982, 5.6534, 0.5150, 2.7498, 3.1930, 2.4334, 1.7781, 1.5613, 1.3067, 0.8291, 0.5633, 0.6522, 9.8191, 5.5771, 2.7987, 4.2845, 3.7030], [6.0642, 7.8242, 3.4634, 1.9259, 4.3169, 2.0913, 6.0446, 3.6804, 6.6736, 4.0727, 2.1791, 11.4139, 5.6795, 7.5652, 6.2039, 2.7174, 4.3266, 3.6930, 2.8058, 2.6721, 2.3047, 2.0848, 2.0972, 2.0441, 1.3160, 9.2085, 4.5557, 3.0296, 2.6045, 2.4059]]).to(torch_device) # fmt: skip torch.testing.assert_close(EXPECTED_OUTPUT, output[0, :2, :30], rtol=1e-3, atol=1e-3) def test_phi_2_generation(self): model = PhiForCausalLM.from_pretrained("microsoft/phi-2") tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") inputs = tokenizer( "Can you help me write a formal email to a potential business partner proposing a joint venture?", return_tensors="pt", return_attention_mask=False, ) outputs = model.generate(**inputs, max_new_tokens=30) output_text = tokenizer.batch_decode(outputs) EXPECTED_OUTPUT = [ "Can you help me write a formal email to a potential business partner proposing a joint venture?\nInput: Company A: ABC Inc.\nCompany B: XYZ Ltd.\nJoint Venture: A new online platform for e-commerce" ] self.assertListEqual(output_text, EXPECTED_OUTPUT)