# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from transformers import is_torch_available from transformers.models.llama.configuration_llama import LlamaConfig from transformers.models.llama.modeling_llama import LlamaModel from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, ) if is_torch_available(): import torch class TestTensorParallel(TestCasePlus): @require_torch_multi_gpu def test_tp(self): distributed_args = f"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_tp.py """.split() output_dir = self.get_auto_remove_tmp_dir() args = f"--output_dir {output_dir} --report_to none".split() cmd = ["torchrun"] + distributed_args + args print(cmd) execute_subprocess_async(cmd, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/tp/test_tp.py # or # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py if not is_torch_available(): exit(0) # Test settings model_id = "meta-llama/Meta-Llama-3-8B-Instruct" bs = 4 seqlen = 64 # Get distributed settings rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) # Initialize distributed device = torch.device(f"cuda:{rank}") torch.distributed.init_process_group("nccl", device_id=device) device_mesh = torch.distributed.init_device_mesh("cuda", (world_size,)) # Get model config config = LlamaConfig.from_pretrained(model_id) # Shrink model size config.num_hidden_layers //= 8 config.vocab_size //= 8 # Instantiate model with device: model = LlamaModel(config) model.eval() # Tensor Parallel if world_size > 1: model.tensor_parallel(device_mesh) # Run model inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device) with torch.no_grad(): out = model(inputs) assert out.last_hidden_state.shape == torch.Size([bs, seqlen, config.hidden_size])