Processors ---------------------------------------------------- This library includes processors for several traditional tasks. These processors can be used to process a dataset into examples that can be fed to a model. Processors ~~~~~~~~~~~~~~~~~~~~~ All processors follow the same architecture which is that of the :class:`~transformers.data.processors.utils.DataProcessor`. The processor returns a list of :class:`~transformers.data.processors.utils.InputExample`. These :class:`~transformers.data.processors.utils.InputExample` can be converted to :class:`~transformers.data.processors.utils.InputFeatures` in order to be fed to the model. .. autoclass:: transformers.data.processors.utils.DataProcessor :members: .. autoclass:: transformers.data.processors.utils.InputExample :members: .. autoclass:: transformers.data.processors.utils.InputFeatures :members: GLUE ~~~~~~~~~~~~~~~~~~~~~ `General Language Understanding Evaluation (GLUE) `__ is a benchmark that evaluates the performance of models across a diverse set of existing NLU tasks. It was released together with the paper `GLUE: A multi-task benchmark and analysis platform for natural language understanding `__ This library hosts a total of 10 processors for the following tasks: MRPC, MNLI, MNLI (mismatched), CoLA, SST2, STSB, QQP, QNLI, RTE and WNLI. Those processors are: - :class:`~transformers.data.processors.utils.MrpcProcessor` - :class:`~transformers.data.processors.utils.MnliProcessor` - :class:`~transformers.data.processors.utils.MnliMismatchedProcessor` - :class:`~transformers.data.processors.utils.Sst2Processor` - :class:`~transformers.data.processors.utils.StsbProcessor` - :class:`~transformers.data.processors.utils.QqpProcessor` - :class:`~transformers.data.processors.utils.QnliProcessor` - :class:`~transformers.data.processors.utils.RteProcessor` - :class:`~transformers.data.processors.utils.WnliProcessor` Additionally, the following method can be used to load values from a data file and convert them to a list of :class:`~transformers.data.processors.utils.InputExample`. .. automethod:: transformers.data.processors.glue.glue_convert_examples_to_features Example usage ^^^^^^^^^^^^^^^^^^^^^^^^^ An example using these processors is given in the `run_glue.py `__ script. XNLI ~~~~~~~~~~~~~~~~~~~~~ `The Cross-Lingual NLI Corpus (XNLI) `__ is a benchmark that evaluates the quality of cross-lingual text representations. XNLI is crowd-sourced dataset based on `MultiNLI `: pairs of text are labeled with textual entailment annotations for 15 different languages (including both high-ressource language such as English and low-ressource languages such as Swahili). It was released together with the paper `XNLI: Evaluating Cross-lingual Sentence Representations `__ This library hosts the processor to load the XNLI data: - :class:`~transformers.data.processors.utils.XnliProcessor` Please note that since the gold labels are available on the test set, evaluation is performed on the test set. Example usage ^^^^^^^^^^^^^^^^^^^^^^^^^ An example using these processors is given in the `run_xnli.py `__ script.