# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import json import random import tempfile import numpy as np from transformers import is_flax_available from transformers.models.auto import get_values from transformers.testing_utils import CaptureLogger, require_flax from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging if is_flax_available(): import os import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict from transformers import ( FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, FLAX_MODEL_MAPPING, FlaxAutoModel, FlaxAutoModelForSequenceClassification, FlaxBertModel, ) from transformers.modeling_flax_utils import FLAX_WEIGHTS_INDEX_NAME, FLAX_WEIGHTS_NAME os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8 def ids_tensor(shape, vocab_size, rng=None): """Creates a random int32 tensor of the shape within the vocab size.""" if rng is None: rng = random.Random() total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) output = np.array(values, dtype=jnp.int32).reshape(shape) return output def floats_tensor(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = random.Random() total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return np.array(values, dtype=jnp.float32).reshape(shape) def random_attention_mask(shape, rng=None): attn_mask = ids_tensor(shape, vocab_size=2, rng=rng) # make sure that at least one token is attended to for each batch attn_mask[:, -1] = 1 return attn_mask def get_params(params, from_head_prefix=None): """Function extracts relevant parameters into flatten dict from model params, appends batch normalization statistics if present""" # If Both parameters and batch normalization statistics are present if "batch_stats" in params: # Extract only parameters for the specified head prefix (if specified) and add batch statistics if from_head_prefix is not None: extracted_params = flatten_dict(unfreeze(params["params"][from_head_prefix])) extracted_params.update(flatten_dict(params["batch_stats"][from_head_prefix])) else: extracted_params = flatten_dict(unfreeze(params["params"])) extracted_params.update(flatten_dict(params["batch_stats"])) # Only parameters are present else: if from_head_prefix is not None: extracted_params = flatten_dict(unfreeze(params[from_head_prefix])) else: extracted_params = flatten_dict(unfreeze(params)) return extracted_params @require_flax class FlaxModelTesterMixin: model_tester = None all_model_classes = () test_mismatched_shapes = True is_encoder_decoder = False test_head_masking = False has_attentions = True @property def all_generative_model_classes(self): return tuple(model_class for model_class in self.all_model_classes if model_class.can_generate()) def _prepare_for_class(self, inputs_dict, model_class): inputs_dict = copy.deepcopy(inputs_dict) # hack for now until we have AutoModel classes if "ForMultipleChoice" in model_class.__name__: inputs_dict = { k: jnp.broadcast_to(v[:, None], (v.shape[0], self.model_tester.num_choices, v.shape[-1])) if isinstance(v, (jnp.ndarray, np.ndarray)) and k != "indices_prng_key" else v for k, v in inputs_dict.items() } return inputs_dict def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): diff = np.abs(a - b).max() self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (list, tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assert_almost_equals(jnp.nan_to_num(tuple_object), jnp.nan_to_num(dict_object), 1e-5) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) def test_from_pretrained_save_pretrained(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): model = model_class(config) prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) outputs = model(**prepared_inputs_dict).to_tuple() # verify that normal save_pretrained works as expected with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) # the config file (and the generation config file, if it can generate) should be saved self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) self.assertEqual( model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) ) model_loaded = model_class.from_pretrained(tmpdirname) outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple() for output_loaded, output in zip(outputs_loaded, outputs): self.assert_almost_equals(output_loaded, output, 1e-3) # verify that save_pretrained for distributed training # with `params=params` works as expected with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, params=model.params) model_loaded = model_class.from_pretrained(tmpdirname) outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple() for output_loaded, output in zip(outputs_loaded, outputs): self.assert_almost_equals(output_loaded, output, 1e-3) def test_save_load_from_base(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = base_class(config) base_params = get_params(model.params) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) head_model = model_class.from_pretrained(tmpdirname) base_param_from_head = get_params(head_model.params, from_head_prefix=head_model.base_model_prefix) for key in base_param_from_head.keys(): max_diff = (base_params[key] - base_param_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def test_save_load_to_base(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = model_class(config) base_params_from_head = get_params(model.params, from_head_prefix=model.base_model_prefix) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) base_model = base_class.from_pretrained(tmpdirname) base_params = get_params(base_model.params) for key in base_params_from_head.keys(): max_diff = (base_params[key] - base_params_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(input_ids, attention_mask=None, **kwargs): return model(input_ids=input_ids, attention_mask=attention_mask, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["input_ids", "attention_mask"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_naming_convention(self): for model_class in self.all_model_classes: model_class_name = model_class.__name__ module_class_name = ( model_class_name[:-5] + "Module" if model_class_name[-5:] == "Model" else model_class_name + "Module" ) bert_modeling_flax_module = __import__(model_class.__module__, fromlist=[module_class_name]) module_cls = getattr(bert_modeling_flax_module, module_class_name) self.assertIsNotNone(module_cls) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length else: seq_length = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_attention_outputs(self): if not self.has_attentions: self.skipTest(reason="Model does not output attentions") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_length = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_length) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # Question Answering model returns start_logits and end_logits if model_class in get_values(FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING): correct_outlen += 1 # start_logits and end_logits instead of only 1 output self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_load_with_mismatched_shapes(self): if not self.test_mismatched_shapes: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class not in get_values(FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING): continue with self.subTest(msg=f"Testing {model_class}"): with tempfile.TemporaryDirectory() as tmp_dir: model = model_class(config) model.save_pretrained(tmp_dir) # Fails when we don't set ignore_mismatched_sizes=True with self.assertRaises(ValueError): new_model = FlaxAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) with self.assertRaises(ValueError): new_model_without_prefix = FlaxAutoModel.from_pretrained(tmp_dir, vocab_size=10) logger = logging.get_logger("transformers.modeling_flax_utils") with CaptureLogger(logger) as cl: new_model = FlaxAutoModelForSequenceClassification.from_pretrained( tmp_dir, num_labels=42, ignore_mismatched_sizes=True ) self.assertIn("the shapes did not match", cl.out) logits = new_model(**inputs_dict)["logits"] self.assertEqual(logits.shape[1], 42) with CaptureLogger(logger) as cl: new_model_without_prefix = FlaxAutoModel.from_pretrained( tmp_dir, vocab_size=10, ignore_mismatched_sizes=True ) self.assertIn("the shapes did not match", cl.out) input_ids = ids_tensor((2, 8), 10) if self.is_encoder_decoder: new_model_without_prefix(input_ids, decoder_input_ids=input_ids) else: new_model_without_prefix(input_ids) def test_default_params_dtype(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # check if all params are still in float32 when dtype of computation is half-precision model = model_class(config, dtype=jnp.float16) types = jax.tree_util.tree_map(lambda x: x.dtype, model.params) types = flatten_dict(types) for name, type_ in types.items(): self.assertEqual(type_, jnp.float32, msg=f"param {name} is not initialized in fp32.") def test_to_bf16(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) # cast all params to bf16 params = model.to_bf16(model.params) types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) # test if all params are in bf16 for name, type_ in types.items(): self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.") # test masking flat_params = flatten_dict(params) key = random.choice(list(flat_params.keys())) # choose a random param mask = {path: path != key for path in flat_params} # don't cast the key mask = unflatten_dict(mask) params = model.to_bf16(model.params, mask) types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) # test if all params are in bf16 except key for name, type_ in types.items(): if name == key: self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.") else: self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.") def test_to_fp16(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) # cast all params to fp16 params = model.to_fp16(model.params) types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) # test if all params are in fp16 for name, type_ in types.items(): self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.") # test masking flat_params = flatten_dict(params) key = random.choice(list(flat_params.keys())) # choose a random param mask = {path: path != key for path in flat_params} # don't cast the key mask = unflatten_dict(mask) params = model.to_fp16(model.params, mask) types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) # test if all params are in fp16 except key for name, type_ in types.items(): if name == key: self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.") else: self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.") def test_to_fp32(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) # cast all params to fp16 and back to fp32 params = model.to_fp16(model.params) params = model.to_fp32(params) # test if all params are in fp32 types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) for name, type_ in types.items(): self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.") # test masking flat_params = flatten_dict(params) key = random.choice(list(flat_params.keys())) # choose a random param mask = {path: path != key for path in flat_params} # don't cast the key mask = unflatten_dict(mask) # cast to fp16 and back to fp32 with mask params = model.to_fp16(model.params) params = model.to_fp32(params, mask) # test if all params are in fp32 except key types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) for name, type_ in types.items(): if name == key: self.assertEqual(type_, jnp.float16, msg=f"param {name} should be in fp16.") else: self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.") def test_save_load_in_fp16(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) # convert weights to fp16 and save params = model.to_fp16(model.params) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, params=params) # load the weights again and check if they are still in fp16 model = model_class.from_pretrained(tmpdirname) types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, model.params)) for name, type_ in types.items(): self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.") def test_save_load_in_bf16(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) # convert weights to bf16 and save params = model.to_bf16(model.params) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, params=params) # load the weights again and check if they are still in fp16 model = model_class.from_pretrained(tmpdirname) types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, model.params)) for name, type_ in types.items(): self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.") def test_model_main_input_name(self): for model_class in self.all_model_classes: model_signature = inspect.signature(getattr(model_class, "__call__")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1] self.assertEqual(model_class.main_input_name, observed_main_input_name) def test_headmasking(self): if not self.test_head_masking: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True def _prepare_layer_head_mask(i, attention_heads, num_hidden_layers): if i == 0: return np.concatenate([np.zeros(1, dtype=jnp.int32), np.ones(attention_heads - 1, dtype=jnp.int32)]) if i == num_hidden_layers - 1: return np.concatenate([np.zeros(attention_heads - 1, dtype=jnp.int32), np.ones(1, dtype=jnp.int32)]) return np.ones(attention_heads, dtype=jnp.int32) for model_class in self.all_model_classes: model = model_class(config) inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False inputs = self._prepare_for_class(inputs_dict, model_class).copy() # Prepare head mask inputs["head_mask"] = np.stack( [ _prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers) for i in range(config.num_hidden_layers) ] ) outputs = model(**inputs) def _check_attentions_validity(attentions): # Remove NaN for t in attentions: # Check we don't have more than 25% nans (arbitrary) self.assertLess(np.isnan(t).sum(), t.size / 4) attentions = [np.where(np.isnan(t), 0.0, t) for t in attentions] self.assertAlmostEqual(attentions[0][..., 0, :, :].sum(), 0.0) self.assertNotEqual(attentions[0][..., -1, :, :].sum(), 0.0) if len(attentions) > 2: # encoder-decodere models have only 2 layers in each modules self.assertNotEqual(attentions[1][..., 0, :, :].sum(), 0.0) self.assertAlmostEqual(attentions[-1][..., -2, :, :].sum(), 0.0) self.assertNotEqual(attentions[-1][..., -1, :, :].sum(), 0.0) if model.config.is_encoder_decoder: raise NotImplementedError("The test has not been implemented for encoder-decoder models yet.") else: _check_attentions_validity(outputs.attentions) def test_no_automatic_init(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: model = model_class(config, _do_init=False) # Check that accessing params raises an ValueError when _do_init is False with self.assertRaises(ValueError): params = model.params # Check if we params can be properly initialized when calling init_weights params = model.init_weights(model.key, model.input_shape) assert isinstance(params, (dict, FrozenDict)), f"params are not an instance of {FrozenDict}" # Check if all required params are initialized keys = set(flatten_dict(unfreeze(params)).keys()) self.assertTrue(all(k in keys for k in model.required_params)) # Check if the shapes match flat_params = flatten_dict(unfreeze(params)) for k, v in flatten_dict(unfreeze(model.params_shape_tree)).items(): self.assertEqual( v.shape, flat_params[k].shape, f"Shapes of {k} do not match. Expecting {v.shape}, got {flat_params[k].shape}.", ) # Check that setting params raises an ValueError when _do_init is False with self.assertRaises(ValueError): model.params = params # Check if we can do a forward pass inputs_dict["output_hidden_states"] = True inputs = self._prepare_for_class(inputs_dict, model_class).copy() model(**inputs, params=params) def test_from_pretrained_with_no_automatic_init(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True def _assert_all_params_initialised(model, params): # Check if all required params are loaded keys = set(flatten_dict(unfreeze(params)).keys()) self.assertTrue(all(k in keys for k in model.required_params)) # Check if the shapes match flat_params = flatten_dict(unfreeze(params)) for k, v in flatten_dict(unfreeze(model.params_shape_tree)).items(): self.assertEqual( v.shape, flat_params[k].shape, f"Shapes of {k} do not match. Expecting {v.shape}, got {flat_params[k].shape}.", ) for model_class in self.all_model_classes: # init the model model = model_class(config) # save the model in the temporary directory # load the saved model with _do_init=False with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model, params = model_class.from_pretrained(tmpdirname, _do_init=False) # Check that accessing params raises an ValueError when _do_init is False with self.assertRaises(ValueError): params = model.params # Check if all required params are loaded _assert_all_params_initialised(model, params) # Check that setting params raises an ValueError when _do_init is False with self.assertRaises(ValueError): model.params = params # Check if init_weights initializes missing keys from from_pretrained flat_params = flatten_dict(unfreeze(params)) random_key = random.choice(list(flat_params.keys())) flat_params.pop(random_key) params = freeze(unflatten_dict(flat_params)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, params=params) model, params = model_class.from_pretrained(tmpdirname, _do_init=False) params = model.init_weights(model.key, model.input_shape, params=params) # Check if all required params are loaded _assert_all_params_initialised(model, params) def test_checkpoint_sharding_from_hub(self): model = FlaxBertModel.from_pretrained("ArthurZ/flax-tiny-random-bert-sharded") # the model above is the same as the model below, just a sharded version. ref_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") for p1, p2 in zip(flatten_dict(model.params).values(), flatten_dict(ref_model.params).values()): assert np.allclose(np.array(p1), np.array(p2)) def test_checkpoint_sharding_local(self): model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") with tempfile.TemporaryDirectory() as tmp_dir: # We use the same folder for various sizes to make sure a new save erases the old checkpoint. for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: model.save_pretrained(tmp_dir, max_shard_size=max_size) # Get each shard file and its size shard_to_size = {} for shard in os.listdir(tmp_dir): if shard.endswith(".msgpack"): shard_file = os.path.join(tmp_dir, shard) shard_to_size[shard_file] = os.path.getsize(shard_file) index_file = os.path.join(tmp_dir, FLAX_WEIGHTS_INDEX_NAME) # Check there is an index but no regular weight file self.assertTrue(os.path.isfile(index_file)) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, FLAX_WEIGHTS_NAME))) # Check a file is bigger than max_size only when it has a single weight for shard_file, size in shard_to_size.items(): if max_size.endswith("kiB"): max_size_int = int(max_size[:-3]) * 2**10 else: max_size_int = int(max_size[:-2]) * 10**3 # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than # the size asked for (since we count parameters) if size >= max_size_int + 50000: with open(shard_file, "rb") as state_f: state_file = from_bytes(FlaxBertModel, state_f.read()) self.assertEqual(len(state_file), 1) # Check the index and the shard files found match with open(index_file, encoding="utf-8") as f: index = json.loads(f.read()) all_shards = set(index["weight_map"].values()) shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".msgpack")} self.assertSetEqual(all_shards, shards_found) # Finally, check the model can be reloaded new_model = FlaxBertModel.from_pretrained(tmp_dir) for p1, p2 in zip(flatten_dict(model.params).values(), flatten_dict(new_model.params).values()): self.assertTrue(np.allclose(np.array(p1), np.array(p2))) def test_gradient_checkpointing(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) remat_model = model_class(config) try: remat_model.enable_gradient_checkpointing() except NotImplementedError: continue outputs = model(**prepared_inputs_dict) remat_outputs = remat_model(**prepared_inputs_dict) # ensure that the dicts of outputs contain the same keys self.assertEqual(outputs.keys(), remat_outputs.keys()) outputs = outputs.to_tuple() remat_outputs = remat_outputs.to_tuple() # ensure that the outputs remain precisely equal for output, remat_output in zip(outputs, remat_outputs): self.assertTrue((output == remat_output).all())