# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Granite model.""" import unittest from parameterized import parameterized from transformers import GraniteConfig, is_torch_available, set_seed from transformers.testing_utils import ( require_read_token, require_torch, require_torch_gpu, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GraniteForCausalLM, GraniteModel, ) from transformers.models.granite.modeling_granite import ( GraniteRotaryEmbedding, ) class GraniteModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device)) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return GraniteConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = GraniteModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class GraniteModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( GraniteModel, GraniteForCausalLM, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": GraniteModel, "text-generation": GraniteForCausalLM, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False fx_compatible = False # Need to use `0.8` instead of `0.9` for `test_cpu_offload` # This is because we are hitting edge cases with the causal_mask buffer model_split_percents = [0.5, 0.7, 0.8] def setUp(self): self.model_tester = GraniteModelTester(self) self.config_tester = ConfigTester(self, config_class=GraniteConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) @parameterized.expand([("linear",), ("dynamic",)]) def test_model_rope_scaling_from_config(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = GraniteModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = GraniteModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) def test_model_rope_scaling(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() scaling_factor = 10 short_input_length = 10 long_input_length = int(config.max_position_embeddings * 1.5) # Inputs x = torch.randn( 1, dtype=torch.float32, device=torch_device ) # used exclusively to get the dtype and the device position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device) position_ids_short = position_ids_short.unsqueeze(0) position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device) position_ids_long = position_ids_long.unsqueeze(0) # Sanity check original RoPE original_rope = GraniteRotaryEmbedding(config=config).to(torch_device) original_cos_short, original_sin_short = original_rope(x, position_ids_short) original_cos_long, original_sin_long = original_rope(x, position_ids_long) torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :]) torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :]) # Sanity check linear RoPE scaling # New position "x" should match original position with index "x/scaling_factor" config.rope_scaling = {"type": "linear", "factor": scaling_factor} linear_scaling_rope = GraniteRotaryEmbedding(config=config).to(torch_device) linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short) linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long) torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :]) torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :]) for new_position in range(0, long_input_length, scaling_factor): original_position = int(new_position // scaling_factor) torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :]) torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :]) # Sanity check Dynamic NTK RoPE scaling # Scaling should only be observed after a long input is fed. We can observe that the frequencies increase # with scaling_factor (or that `inv_freq` decreases) config.rope_scaling = {"type": "dynamic", "factor": scaling_factor} ntk_scaling_rope = GraniteRotaryEmbedding(config=config).to(torch_device) ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short) ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long) torch.testing.assert_close(ntk_cos_short, original_cos_short) torch.testing.assert_close(ntk_sin_short, original_sin_short) with self.assertRaises(AssertionError): torch.testing.assert_close(ntk_cos_long, original_cos_long) with self.assertRaises(AssertionError): torch.testing.assert_close(ntk_sin_long, original_sin_long) self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all()) # Sanity check Yarn RoPE scaling # Scaling should be over the entire input config.rope_scaling = {"type": "yarn", "factor": scaling_factor} yarn_scaling_rope = GraniteRotaryEmbedding(config=config).to(torch_device) yarn_cos_short, yarn_sin_short = yarn_scaling_rope(x, position_ids_short) yarn_cos_long, yarn_sin_long = yarn_scaling_rope(x, position_ids_long) torch.testing.assert_close(yarn_cos_short, yarn_cos_long[:, :short_input_length, :]) torch.testing.assert_close(yarn_sin_short, yarn_sin_long[:, :short_input_length, :]) with self.assertRaises(AssertionError): torch.testing.assert_close(yarn_cos_short, original_cos_short) with self.assertRaises(AssertionError): torch.testing.assert_close(yarn_sin_short, original_sin_short) with self.assertRaises(AssertionError): torch.testing.assert_close(yarn_cos_long, original_cos_long) with self.assertRaises(AssertionError): torch.testing.assert_close(yarn_sin_long, original_sin_long) @require_torch_gpu class GraniteIntegrationTest(unittest.TestCase): # This variable is used to determine which CUDA device are we using for our runners (A10 or T4) # Depending on the hardware we get different logits / generations cuda_compute_capability_major_version = None @classmethod def setUpClass(cls): if is_torch_available() and torch.cuda.is_available(): # 8 is for A100 / A10 and 7 for T4 cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0] @slow @require_read_token def test_model_3b_logits_bf16(self): input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] model = GraniteForCausalLM.from_pretrained( "ibm/PowerLM-3b", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager" ) with torch.no_grad(): out = model(torch.tensor([input_ids]).to(torch_device)) # Expected mean on dim = -1 # fmt: off EXPECTED_MEAN = torch.tensor([[-1.9798, -3.1626, -2.8062, -2.3777, -2.7091, -2.2338, -2.5924, -2.3974]]) torch.testing.assert_close(EXPECTED_MEAN.to(torch_device), out.logits.mean(-1), rtol=1e-2, atol=1e-2) # slicing logits[0, 0, 0:15] EXPECTED_SLICE = torch.tensor([[4.8750, -2.1875, -2.1875, -2.1875, -2.1875, -2.8438, -2.1875, -2.1875, -2.1875, -2.1875, -2.1875, -2.1875, -2.1875, -2.1875, -2.1875]]) # fmt: on self.assertTrue( torch.allclose( EXPECTED_SLICE.to(torch_device), out.logits[0, 0, :15].float(), atol=1e-3, rtol=1e-3, ) ) @slow @require_read_token def test_model_3b_logits(self): input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] model = GraniteForCausalLM.from_pretrained("ibm/PowerLM-3b", device_map="auto", torch_dtype=torch.float16) with torch.no_grad(): out = model(torch.tensor([input_ids]).to(torch_device)) # fmt: off # Expected mean on dim = -1 EXPECTED_MEAN = torch.tensor([[-2.0984, -3.1294, -2.8153, -2.3568, -2.7337, -2.2624, -2.6016, -2.4022]]) torch.testing.assert_close(EXPECTED_MEAN.to(torch_device), out.logits.float().mean(-1), rtol=1e-2, atol=1e-2)