# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Bros model.""" import copy import unittest from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device from transformers.utils import is_torch_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BrosConfig, BrosForTokenClassification, BrosModel, BrosSpadeEEForTokenClassification, BrosSpadeELForTokenClassification, ) class BrosModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_bbox_first_token_mask=True, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_bbox_first_token_mask = use_bbox_first_token_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.seq_length, 8], 1) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) bbox_first_token_mask = None if self.use_bbox_first_token_mask: bbox_first_token_mask = torch.ones([self.batch_size, self.seq_length], dtype=torch.bool).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) token_labels = None if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) initial_token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) subsequent_token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return ( config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ) def get_config(self): return BrosConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model( self, config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ): model = BrosModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, bbox=bbox, token_type_ids=token_type_ids) result = model(input_ids, bbox=bbox) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ): config.num_labels = self.num_labels model = BrosForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_spade_ee_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ): config.num_labels = self.num_labels model = BrosSpadeEEForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, bbox_first_token_mask=bbox_first_token_mask, token_type_ids=token_type_ids, initial_token_labels=token_labels, subsequent_token_labels=token_labels, ) self.parent.assertEqual(result.initial_token_logits.shape, (self.batch_size, self.seq_length, self.num_labels)) self.parent.assertEqual( result.subsequent_token_logits.shape, (self.batch_size, self.seq_length, self.seq_length + 1) ) def create_and_check_for_spade_el_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ): config.num_labels = self.num_labels model = BrosSpadeELForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, bbox_first_token_mask=bbox_first_token_mask, token_type_ids=token_type_ids, labels=token_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.seq_length + 1)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class BrosModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): test_pruning = False test_torchscript = False test_mismatched_shapes = False all_model_classes = ( ( BrosForTokenClassification, BrosSpadeEEForTokenClassification, BrosSpadeELForTokenClassification, BrosModel, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": BrosModel, "token-classification": BrosForTokenClassification} if is_torch_available() else {} ) # BROS requires `bbox` in the inputs which doesn't fit into the above 2 pipelines' input formats. # see https://github.com/huggingface/transformers/pull/26294 def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): return True def setUp(self): self.model_tester = BrosModelTester(self) self.config_tester = ConfigTester(self, config_class=BrosConfig, hidden_size=37) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if model_class.__name__ in ["BrosForTokenClassification", "BrosSpadeELForTokenClassification"]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["bbox_first_token_mask"] = torch.ones( [self.model_tester.batch_size, self.model_tester.seq_length], dtype=torch.bool, device=torch_device, ) elif model_class.__name__ in ["BrosSpadeEEForTokenClassification"]: inputs_dict["initial_token_labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["subsequent_token_labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["bbox_first_token_mask"] = torch.ones( [self.model_tester.batch_size, self.model_tester.seq_length], dtype=torch.bool, device=torch_device, ) return inputs_dict def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @require_torch_multi_gpu def test_multi_gpu_data_parallel_forward(self): super().test_multi_gpu_data_parallel_forward() def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_spade_ee_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_spade_ee_token_classification(*config_and_inputs) def test_for_spade_el_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_spade_el_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "jinho8345/bros-base-uncased" model = BrosModel.from_pretrained(model_name) self.assertIsNotNone(model) def prepare_bros_batch_inputs(): attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) bbox = torch.tensor( [ [ [0.0000, 0.0000, 0.0000, 0.0000], [0.5223, 0.5590, 0.5787, 0.5720], [0.5853, 0.5590, 0.6864, 0.5720], [0.5853, 0.5590, 0.6864, 0.5720], [0.1234, 0.5700, 0.2192, 0.5840], [0.2231, 0.5680, 0.2782, 0.5780], [0.2874, 0.5670, 0.3333, 0.5780], [0.3425, 0.5640, 0.4344, 0.5750], [0.0866, 0.7770, 0.1181, 0.7870], [0.1168, 0.7770, 0.1522, 0.7850], [0.1535, 0.7750, 0.1864, 0.7850], [0.1890, 0.7750, 0.2572, 0.7850], [1.0000, 1.0000, 1.0000, 1.0000], ], [ [0.0000, 0.0000, 0.0000, 0.0000], [0.4396, 0.6720, 0.4659, 0.6850], [0.4698, 0.6720, 0.4843, 0.6850], [0.1575, 0.6870, 0.2021, 0.6980], [0.2047, 0.6870, 0.2730, 0.7000], [0.1299, 0.7010, 0.1430, 0.7140], [0.1299, 0.7010, 0.1430, 0.7140], [0.1562, 0.7010, 0.2441, 0.7120], [0.1562, 0.7010, 0.2441, 0.7120], [0.2454, 0.7010, 0.3150, 0.7120], [0.3176, 0.7010, 0.3320, 0.7110], [0.3333, 0.7000, 0.4029, 0.7140], [1.0000, 1.0000, 1.0000, 1.0000], ], ] ) input_ids = torch.tensor( [ [101, 1055, 8910, 1012, 5719, 3296, 5366, 3378, 2146, 2846, 10807, 13494, 102], [101, 2112, 1997, 3671, 6364, 1019, 1012, 5057, 1011, 4646, 2030, 2974, 102], ] ) return input_ids, bbox, attention_mask @require_torch class BrosModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = BrosModel.from_pretrained("jinho8345/bros-base-uncased").to(torch_device) input_ids, bbox, attention_mask = prepare_bros_batch_inputs() with torch.no_grad(): outputs = model( input_ids.to(torch_device), bbox.to(torch_device), attention_mask=attention_mask.to(torch_device), return_dict=True, ) # verify the logits expected_shape = torch.Size((2, 13, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[-0.3074, 0.1363, 0.3143], [0.0925, -0.1155, 0.1050], [0.0221, 0.0003, 0.1285]] ).to(torch_device) torch.set_printoptions(sci_mode=False) torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)