# Copyright 2021 HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from functools import lru_cache from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin, use_cache_if_possible SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class BartphoTokenizerTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "vinai/bartpho-syllable" tokenizer_class = BartphoTokenizer test_rust_tokenizer = False test_sentencepiece = True @classmethod def setUpClass(cls): super().setUpClass() vocab = ["▁This", "▁is", "▁a", "▁t", "est"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) cls.special_tokens_map = {"unk_token": ""} cls.monolingual_vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(cls.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") tokenizer = BartphoTokenizer(SAMPLE_VOCAB, cls.monolingual_vocab_file, **cls.special_tokens_map) tokenizer.save_pretrained(cls.tmpdirname) @classmethod @use_cache_if_possible @lru_cache(maxsize=64) def get_tokenizer(cls, pretrained_name=None, **kwargs): kwargs.update(cls.special_tokens_map) pretrained_name = pretrained_name or cls.tmpdirname return BartphoTokenizer.from_pretrained(pretrained_name, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "This is a là test" output_text = "This is a test" return input_text, output_text def test_full_tokenizer(self): tokenizer = BartphoTokenizer(SAMPLE_VOCAB, self.monolingual_vocab_file, **self.special_tokens_map) text = "This is a là test" bpe_tokens = "▁This ▁is ▁a ▁l à ▁t est".split() tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)