# DistilBERT
PyTorch TensorFlow Flax FlashAttention SDPA
## Overview The DistilBERT model was proposed in the blog post [Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5), and the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108). DistilBERT is a small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less parameters than *google-bert/bert-base-uncased*, runs 60% faster while preserving over 95% of BERT's performances as measured on the GLUE language understanding benchmark. The abstract from the paper is the following: *As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP), operating these large models in on-the-edge and/or under constrained computational training or inference budgets remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger counterparts. While most prior work investigated the use of distillation for building task-specific models, we leverage knowledge distillation during the pretraining phase and show that it is possible to reduce the size of a BERT model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the inductive biases learned by larger models during pretraining, we introduce a triple loss combining language modeling, distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device study.* This model was contributed by [victorsanh](https://huggingface.co/victorsanh). This model jax version was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/huggingface/transformers-research-projects/tree/main/distillation). ## Usage tips - DistilBERT doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`). - DistilBERT doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let us know if you need this option. - Same as BERT but smaller. Trained by distillation of the pretrained BERT model, meaning it’s been trained to predict the same probabilities as the larger model. The actual objective is a combination of: * finding the same probabilities as the teacher model * predicting the masked tokens correctly (but no next-sentence objective) * a cosine similarity between the hidden states of the student and the teacher model ### Using Scaled Dot Product Attention (SDPA) PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the [official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention) page for more information. SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set `attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used. ``` from transformers import DistilBertModel model = DistilBertModel.from_pretrained("distilbert-base-uncased", torch_dtype=torch.float16, attn_implementation="sdpa") ``` For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`). On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and the `distilbert-base-uncased` model with a MaskedLM head, we saw the following speedups during training and inference. #### Training | num_training_steps | batch_size | seq_len | is cuda | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) | |--------------------|------------|---------|---------|----------------------------|---------------------------|-------------|---------------------|--------------------|----------------| | 100 | 1 | 128 | False | 0.010 | 0.008 | 28.870 | 397.038 | 399.629 | -0.649 | | 100 | 1 | 256 | False | 0.011 | 0.009 | 20.681 | 412.505 | 412.606 | -0.025 | | 100 | 2 | 128 | False | 0.011 | 0.009 | 23.741 | 412.213 | 412.606 | -0.095 | | 100 | 2 | 256 | False | 0.015 | 0.013 | 16.502 | 427.491 | 425.787 | 0.400 | | 100 | 4 | 128 | False | 0.015 | 0.013 | 13.828 | 427.491 | 425.787 | 0.400 | | 100 | 4 | 256 | False | 0.025 | 0.022 | 12.882 | 594.156 | 502.745 | 18.182 | | 100 | 8 | 128 | False | 0.023 | 0.022 | 8.010 | 545.922 | 502.745 | 8.588 | | 100 | 8 | 256 | False | 0.046 | 0.041 | 12.763 | 983.450 | 798.480 | 23.165 | #### Inference | num_batches | batch_size | seq_len | is cuda | is half | use mask | Per token latency eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) | |-------------|------------|---------|---------|---------|----------|-----------------------------|-----------------------------|-------------|----------------|--------------|---------------| | 50 | 2 | 64 | True | True | True | 0.032 | 0.025 | 28.192 | 154.532 | 155.531 | -0.642 | | 50 | 2 | 128 | True | True | True | 0.033 | 0.025 | 32.636 | 157.286 | 157.482 | -0.125 | | 50 | 4 | 64 | True | True | True | 0.032 | 0.026 | 24.783 | 157.023 | 157.449 | -0.271 | | 50 | 4 | 128 | True | True | True | 0.034 | 0.028 | 19.299 | 162.794 | 162.269 | 0.323 | | 50 | 8 | 64 | True | True | True | 0.035 | 0.028 | 25.105 | 160.958 | 162.204 | -0.768 | | 50 | 8 | 128 | True | True | True | 0.052 | 0.046 | 12.375 | 173.155 | 171.844 | 0.763 | | 50 | 16 | 64 | True | True | True | 0.051 | 0.045 | 12.882 | 172.106 | 171.713 | 0.229 | | 50 | 16 | 128 | True | True | True | 0.096 | 0.081 | 18.524 | 191.257 | 191.517 | -0.136 | ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DistilBERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. - A blog post on [Getting Started with Sentiment Analysis using Python](https://huggingface.co/blog/sentiment-analysis-python) with DistilBERT. - A blog post on how to [train DistilBERT with Blurr for sequence classification](https://huggingface.co/blog/fastai). - A blog post on how to use [Ray to tune DistilBERT hyperparameters](https://huggingface.co/blog/ray-tune). - A blog post on how to [train DistilBERT with Hugging Face and Amazon SageMaker](https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face). - A notebook on how to [finetune DistilBERT for multi-label classification](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb). 🌎 - A notebook on how to [finetune DistilBERT for multiclass classification with PyTorch](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb). 🌎 - A notebook on how to [finetune DistilBERT for text classification in TensorFlow](https://colab.research.google.com/github/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb). 🌎 - [`DistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb). - [`TFDistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb). - [`FlaxDistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb). - [Text classification task guide](../tasks/sequence_classification) - [`DistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb). - [`TFDistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb). - [`FlaxDistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification). - [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the πŸ€— Hugging Face Course. - [Token classification task guide](../tasks/token_classification) - [`DistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb). - [`TFDistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). - [`FlaxDistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb). - [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the πŸ€— Hugging Face Course. - [Masked language modeling task guide](../tasks/masked_language_modeling) - [`DistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb). - [`TFDistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb). - [`FlaxDistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering). - [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the πŸ€— Hugging Face Course. - [Question answering task guide](../tasks/question_answering) **Multiple choice** - [`DistilBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb). - [`TFDistilBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb). - [Multiple choice task guide](../tasks/multiple_choice) βš—οΈ Optimization - A blog post on how to [quantize DistilBERT with πŸ€— Optimum and Intel](https://huggingface.co/blog/intel). - A blog post on how [Optimizing Transformers for GPUs with πŸ€— Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum-gpu). - A blog post on [Optimizing Transformers with Hugging Face Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum). ⚑️ Inference - A blog post on how to [Accelerate BERT inference with Hugging Face Transformers and AWS Inferentia](https://huggingface.co/blog/bert-inferentia-sagemaker) with DistilBERT. - A blog post on [Serverless Inference with Hugging Face's Transformers, DistilBERT and Amazon SageMaker](https://www.philschmid.de/sagemaker-serverless-huggingface-distilbert). πŸš€ Deploy - A blog post on how to [deploy DistilBERT on Google Cloud](https://huggingface.co/blog/how-to-deploy-a-pipeline-to-google-clouds). - A blog post on how to [deploy DistilBERT with Amazon SageMaker](https://huggingface.co/blog/deploy-hugging-face-models-easily-with-amazon-sagemaker). - A blog post on how to [Deploy BERT with Hugging Face Transformers, Amazon SageMaker and Terraform module](https://www.philschmid.de/terraform-huggingface-amazon-sagemaker). ## Combining DistilBERT and Flash Attention 2 First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature. ```bash pip install -U flash-attn --no-build-isolation ``` Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16`) To load and run a model using Flash Attention 2, refer to the snippet below: ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModel >>> device = "cuda" # the device to load the model onto >>> tokenizer = AutoTokenizer.from_pretrained('distilbert/distilbert-base-uncased') >>> model = AutoModel.from_pretrained("distilbert/distilbert-base-uncased", torch_dtype=torch.float16, attn_implementation="flash_attention_2") >>> text = "Replace me by any text you'd like." >>> encoded_input = tokenizer(text, return_tensors='pt').to(device) >>> model.to(device) >>> output = model(**encoded_input) ``` ## DistilBertConfig [[autodoc]] DistilBertConfig ## DistilBertTokenizer [[autodoc]] DistilBertTokenizer ## DistilBertTokenizerFast [[autodoc]] DistilBertTokenizerFast ## DistilBertModel [[autodoc]] DistilBertModel - forward ## DistilBertForMaskedLM [[autodoc]] DistilBertForMaskedLM - forward ## DistilBertForSequenceClassification [[autodoc]] DistilBertForSequenceClassification - forward ## DistilBertForMultipleChoice [[autodoc]] DistilBertForMultipleChoice - forward ## DistilBertForTokenClassification [[autodoc]] DistilBertForTokenClassification - forward ## DistilBertForQuestionAnswering [[autodoc]] DistilBertForQuestionAnswering - forward ## TFDistilBertModel [[autodoc]] TFDistilBertModel - call ## TFDistilBertForMaskedLM [[autodoc]] TFDistilBertForMaskedLM - call ## TFDistilBertForSequenceClassification [[autodoc]] TFDistilBertForSequenceClassification - call ## TFDistilBertForMultipleChoice [[autodoc]] TFDistilBertForMultipleChoice - call ## TFDistilBertForTokenClassification [[autodoc]] TFDistilBertForTokenClassification - call ## TFDistilBertForQuestionAnswering [[autodoc]] TFDistilBertForQuestionAnswering - call ## FlaxDistilBertModel [[autodoc]] FlaxDistilBertModel - __call__ ## FlaxDistilBertForMaskedLM [[autodoc]] FlaxDistilBertForMaskedLM - __call__ ## FlaxDistilBertForSequenceClassification [[autodoc]] FlaxDistilBertForSequenceClassification - __call__ ## FlaxDistilBertForMultipleChoice [[autodoc]] FlaxDistilBertForMultipleChoice - __call__ ## FlaxDistilBertForTokenClassification [[autodoc]] FlaxDistilBertForTokenClassification - __call__ ## FlaxDistilBertForQuestionAnswering [[autodoc]] FlaxDistilBertForQuestionAnswering - __call__