PyTorch TensorFlow
# Convolutional Vision Transformer (CvT) Convolutional Vision Transformer (CvT) is a model that combines the strengths of convolutional neural networks (CNNs) and Vision transformers for the computer vision tasks. It introduces convolutional layers into the vision transformer architecture, allowing it to capture local patterns in images while maintaining the global context provided by self-attention mechanisms. You can find all the CvT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=cvt) organization. > [!TIP] > This model was contributed by [anujunj](https://huggingface.co/anugunj). > > Click on the CvT models in the right sidebar for more examples of how to apply CvT to different computer vision tasks. The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class. ```py import torch from transformers import pipeline pipeline = pipeline( task="image-classification", model="microsoft/cvt-13", torch_dtype=torch.float16, device=0 ) pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg") ``` ```py import torch import requests from PIL import Image from transformers import AutoModelForImageClassification, AutoImageProcessor image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13") model = AutoModelForImageClassification.from_pretrained( "microsoft/cvt-13", torch_dtype=torch.float16, device_map="auto" ) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" image = Image.open(requests.get(url, stream=True).raw) inputs = image_processor(image, return_tensors="pt").to("cuda") with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax(dim=-1).item() class_labels = model.config.id2label predicted_class_label = class_labels[predicted_class_id] print(f"The predicted class label is: {predicted_class_label}") ``` ## Resources Refer to this set of ViT [notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) for examples of inference and fine-tuning on custom datasets. Replace [`ViTFeatureExtractor`] and [`ViTForImageClassification`] in these notebooks with [`AutoImageProcessor`] and [`CvtForImageClassification`]. ## CvtConfig [[autodoc]] CvtConfig ## CvtModel [[autodoc]] CvtModel - forward ## CvtForImageClassification [[autodoc]] CvtForImageClassification - forward ## TFCvtModel [[autodoc]] TFCvtModel - call ## TFCvtForImageClassification [[autodoc]] TFCvtForImageClassification - call