# coding=utf-8 # Copyright 2018 HuggingFace Inc.. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import sys import unittest from time import time from unittest.mock import patch from transformers.testing_utils import require_torch_tpu logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() @require_torch_tpu class TorchXLAExamplesTests(unittest.TestCase): def test_run_glue(self): import xla_spawn stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) output_directory = "run_glue_output" testargs = f""" transformers/examples/text-classification/run_glue.py --num_cores=8 transformers/examples/text-classification/run_glue.py --do_train --do_eval --task_name=MRPC --data_dir=/datasets/glue_data/MRPC --cache_dir=./cache_dir --num_train_epochs=1 --max_seq_length=128 --learning_rate=3e-5 --output_dir={output_directory} --overwrite_output_dir --logging_steps=5 --save_steps=5 --overwrite_cache --tpu_metrics_debug --model_name_or_path=bert-base-cased --per_device_train_batch_size=64 --per_device_eval_batch_size=64 --evaluate_during_training --overwrite_cache """.split() with patch.object(sys, "argv", testargs): start = time() xla_spawn.main() end = time() result = {} with open(f"{output_directory}/eval_results_mrpc.txt") as f: lines = f.readlines() for line in lines: key, value = line.split(" = ") result[key] = float(value) del result["eval_loss"] for value in result.values(): # Assert that the model trains self.assertGreaterEqual(value, 0.70) # Assert that the script takes less than 300 seconds to make sure it doesn't hang. self.assertLess(end - start, 300)