# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import glob import inspect import math import unittest import numpy as np import pytest from datasets import load_dataset from huggingface_hub import snapshot_download from transformers import Wav2Vec2Config, is_tf_available from transformers.testing_utils import require_librosa, require_pyctcdecode, require_tf, slow from transformers.utils import is_librosa_available, is_pyctcdecode_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor if is_tf_available(): import tensorflow as tf from transformers import TFWav2Vec2ForCTC, TFWav2Vec2Model, Wav2Vec2Processor from transformers.models.wav2vec2.modeling_tf_wav2vec2 import _compute_mask_indices if is_pyctcdecode_available(): from transformers import Wav2Vec2ProcessorWithLM if is_librosa_available(): import librosa @require_tf class TFWav2Vec2ModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, is_training=False, hidden_size=16, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=4, num_attention_heads=2, hidden_dropout_prob=0.1, # this is most likely not correctly set yet intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length def prepare_config_and_inputs(self): input_values = tf.cast(ids_tensor([self.batch_size, self.seq_length], 32768), tf.float32) / 32768.0 attention_mask = tf.ones_like(input_values) config = Wav2Vec2Config( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, do_stable_layer_norm=self.do_stable_layer_norm, ) return config, input_values, attention_mask def create_and_check_model(self, config, input_values, attention_mask): model = TFWav2Vec2Model(config) result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 config.layerdrop = 0.0 model = TFWav2Vec2Model(config) input_values = input_values[:3] attention_mask = tf.ones_like(input_values) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) # convert values that are over input_lengths to padding input_values = input_values * length_mask attention_mask = attention_mask * length_mask batch_outputs = model(input_values, attention_mask=attention_mask, training=False).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice, training=False).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(np.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) input_values = input_values[:3] attention_mask = tf.ones_like(input_values) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) # convert values that are over input_lengths to padding input_values = input_values * length_mask attention_mask = attention_mask * length_mask model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss self.parent.assertTrue(abs(labels.shape[0] * mean_loss - sum_loss) < 1e-2) def check_training(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) input_values = input_values * length_mask pad_size = max(max_length_labels) - labels.shape[1] labels = tf.pad(labels, ((0, 0), (0, pad_size)), constant_values=-100) loss = model(input_values, labels=labels, training=True).loss self.parent.assertFalse(tf.math.is_inf(loss)) def check_labels_out_of_vocab(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size + 100) with pytest.raises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_tf class TFWav2Vec2ModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TFWav2Vec2Model, TFWav2Vec2ForCTC) if is_tf_available() else () test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFWav2Vec2ModelTester(self) self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() # overwrite because input_values != input_ids def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # overwrite because input_values != input_ids def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_values = inputs_keywords.pop("input_values", None) outputs_keywords = model(input_values, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.output_seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) def test_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_training(*config_and_inputs) # Wav2Vec2 has no inputs_embeds def test_inputs_embeds(self): pass # Wav2Vec2 cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # Wav2Vec2 has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass @slow def test_model_from_pretrained(self): model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsNotNone(model) @require_tf class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TFWav2Vec2Model, TFWav2Vec2ForCTC) if is_tf_available() else () test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFWav2Vec2ModelTester( self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True, scope="robust", ) self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37) # overwrite because input_values != input_ids def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # overwrite because input_values != input_ids def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_values = inputs_keywords.pop("input_values", None) outputs_keywords = model(input_values, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.output_seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_batched_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_batch_inference(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) def test_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_training(*config_and_inputs) # Wav2Vec2 has no inputs_embeds def test_inputs_embeds(self): pass # Wav2Vec2 cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # Wav2Vec2 has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass @slow def test_model_from_pretrained(self): model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsNotNone(model) @require_tf class TFWav2Vec2UtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) self.assertListEqual( tf.reduce_sum(mask, -1).numpy().tolist(), [mask_prob * sequence_length for _ in range(batch_size)] ) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in tf.reduce_sum(mask, -1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) @require_tf @slow class TFWav2Vec2ModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_inference_ctc_normal(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) input_speech = self._load_datasamples(1) input_values = processor(input_speech, return_tensors="tf", sampling_rate=16000).input_values logits = model(input_values).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_normal_batched(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) input_speech = self._load_datasamples(2) input_values = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000).input_values logits = model(input_values).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_robust_batched(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True) input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000) input_values = inputs.input_values attention_mask = inputs.attention_mask logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about", "his instant panic was followed by a small sharp blow high on his chest", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm(self): downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")