# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math import unittest import numpy as np from datasets import load_dataset from transformers import Wav2Vec2Config, is_flax_available from transformers.testing_utils import ( is_librosa_available, is_pyctcdecode_available, require_flax, require_librosa, require_pyctcdecode, require_soundfile, slow, ) from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp import optax from flax.traverse_util import flatten_dict from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor from transformers.models.wav2vec2.modeling_flax_wav2vec2 import ( FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining, FlaxWav2Vec2GumbelVectorQuantizer, FlaxWav2Vec2Model, _compute_mask_indices, _sample_negative_indices, ) if is_pyctcdecode_available(): from transformers import Wav2Vec2ProcessorWithLM if is_librosa_available(): import librosa class FlaxWav2Vec2ModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=24, feat_extract_norm="layer", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=4, num_attention_heads=2, hidden_dropout_prob=0.1, # this is most likely not correctly set yet intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=True, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = Wav2Vec2Config( do_stable_layer_norm=self.do_stable_layer_norm, hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, ) return config, input_values, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_values, attention_mask = config_and_inputs inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_flax class FlaxWav2Vec2ModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = ( (FlaxWav2Vec2Model, FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining) if is_flax_available() else () ) def setUp(self): self.model_tester = FlaxWav2Vec2ModelTester(self) def test_train(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_values = inputs_dict["input_values"] attention_mask = inputs_dict["attention_mask"] model = FlaxWav2Vec2ForPreTraining(config) features_shape = ( input_values.shape[0], model._get_feat_extract_output_lengths(np.array(input_values.shape[1])), ) batch_size, sequence_length = features_shape[:2] mask_prob = 0.5 mask_length = 4 mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) dropout_rng, gumbel_rng = jax.random.split(jax.random.PRNGKey(0)) output = model( input_values, attention_mask=attention_mask, mask_time_indices=mask_time_indices, train=True, dropout_rng=dropout_rng, gumbel_rng=gumbel_rng, )[0] self.assertTrue(output.shape == (batch_size, sequence_length, model.config.proj_codevector_dim)) # overwrite because of `input_values` def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values", "attention_mask"] self.assertListEqual(arg_names[:2], expected_arg_names) # overwrite because of `input_values` def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(input_values, attention_mask=None, **kwargs): return model(input_values=input_values, attention_mask=attention_mask, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_freeze_feature_encoder(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_values = inputs_dict["input_values"] attention_mask = inputs_dict["attention_mask"] model = FlaxWav2Vec2ForPreTraining(config) params = model.params # dummy loss function def compute_loss( params, input_values, attention_mask, freeze_feature_encoder: bool = False, epsilon: float = 1e-8 ): outputs = model( input_values, attention_mask=attention_mask, freeze_feature_encoder=freeze_feature_encoder, params=params, ) # compute cosine similarity of projected and projected_quantized states cosine_sim = optax.cosine_similarity( outputs.projected_states, outputs.projected_quantized_states, epsilon=epsilon ) loss = cosine_sim.sum() return loss, outputs.to_tuple() # transform the loss function to get the gradients grad_fn = jax.value_and_grad(compute_loss, has_aux=True) # compute loss, outputs and gradients for unfrozen model (loss, outputs), grads = grad_fn(params, input_values, attention_mask, freeze_feature_encoder=False) # compare to loss, outputs and gradients for frozen model (loss_frozen, outputs_frozen), grads_frozen = grad_fn( params, input_values, attention_mask, freeze_feature_encoder=True ) # ensure that the outputs and losses remain precisely equal for output, output_frozen in zip(outputs, outputs_frozen): self.assertTrue((output == output_frozen).all()) self.assertEqual(loss, loss_frozen) grads = flatten_dict(grads) grads_frozen = flatten_dict(grads_frozen) # ensure that the dicts of gradients contain the same keys self.assertEqual(grads.keys(), grads_frozen.keys()) # ensure that the gradients of the feature extractor layers are precisely zero when frozen and contain non-zero entries when unfrozen feature_extractor_grads = tuple(grads[k] for k in grads if "feature_extractor" in k) feature_extractor_grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" in k) for feature_extractor_grad, feature_extractor_grad_frozen in zip( feature_extractor_grads, feature_extractor_grads_frozen ): self.assertTrue((feature_extractor_grad_frozen == 0.0).all()) self.assertTrue((feature_extractor_grad > 0.0).any()) # ensure that the gradients of all unfrozen layers remain equal, i.e. all layers excluding the frozen 'feature_extractor' grads = tuple(grads[k] for k in grads if "feature_extractor" not in k) grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" not in k) for grad, grad_frozen in zip(grads, grads_frozen): self.assertTrue((grad == grad_frozen).all()) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True) outputs = model(np.ones((1, 1024), dtype="f4")) self.assertIsNotNone(outputs) @require_flax class FlaxWav2Vec2UtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)]) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) def test_compute_mask_indices_attn_mask_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 attention_mask = np.ones((batch_size, sequence_length), dtype=np.int32) attention_mask[:2, sequence_length // 2 :] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask ) for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0) def test_compute_perplexity(self): probs = np.arange(100).reshape(2, 5, 10) / 100 ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs) self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3) # mask half of the input mask = np.ones((2,), dtype=np.bool) mask[0] = 0 ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask) self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3) def test_sample_negatives(self): batch_size = 2 sequence_length = 10 hidden_size = 4 num_negatives = 3 features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape( sequence_length, hidden_size ) # each value in vector consits of same value features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size)) negative_indices = _sample_negative_indices(features.shape, num_negatives) features = features.reshape(-1, hidden_size) # BTC => (BxT)C # take negative vectors from sampled indices sampled_negatives = features[negative_indices.reshape(-1)] negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose( 2, 0, 1, 3 ) self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size)) # make sure no negatively sampled vector is actually a positive one for negative in negatives: self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0) # make sure that full vectors are sampled and not values of vectors # => this means that `unique()` yields a single value for `hidden_size` dim self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1)) def test_sample_negatives_with_attn_mask(self): batch_size = 2 sequence_length = 10 hidden_size = 4 num_negatives = 3 features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape( sequence_length, hidden_size ) # each value in vector consits of same value # second half of last input tensor is padded attention_mask = np.ones((batch_size, sequence_length), dtype=np.int8) attention_mask[-1, sequence_length // 2 :] = 0 forbidden_indices = ( np.arange(sequence_length // 2, sequence_length, dtype=np.int32) + (batch_size - 1) * sequence_length ).tolist() features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size)) negative_indices = _sample_negative_indices(features.shape, num_negatives, attention_mask=attention_mask) # make sure that no padding tokens are sampled self.assertTrue(all([idx not in negative_indices for idx in forbidden_indices])) features = features.reshape(-1, hidden_size) # BTC => (BxT)C # take negative vectors from sampled indices sampled_negatives = features[negative_indices.reshape(-1)] negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose( 2, 0, 1, 3 ) self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size)) # make sure no negatively sampled vector is actually a positive one for negative in negatives: self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0) # make sure that full vectors are sampled and not just slices of vectors # => this means that `unique()` yields a single value for `hidden_size` dim self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1)) @require_flax @require_soundfile @slow class FlaxWav2Vec2ModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_inference_ctc_robust_batched(self): model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True) processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True) input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="np", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = jnp.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about", "his instant panic was followed by a small sharp blow high on his chest", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_pretrained(self): model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60", from_pt=True) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "facebook/wav2vec2-large-lv60", return_attention_mask=True ) input_speech = self._load_datasamples(2) inputs_dict = feature_extractor(input_speech, return_tensors="np", padding=True) features_shape = ( inputs_dict["input_values"].shape[0], model._get_feat_extract_output_lengths(np.array(inputs_dict["input_values"].shape[1])), ) mask_time_indices = _compute_mask_indices( features_shape, model.config.mask_time_prob, model.config.mask_time_length, min_masks=2, ) outputs = model( inputs_dict.input_values, attention_mask=inputs_dict.attention_mask, mask_time_indices=mask_time_indices, ) # compute cosine similarity cosine_sim = optax.cosine_similarity( outputs.projected_states, outputs.projected_quantized_states, epsilon=1e-8 ) # retrieve cosine sim of masked features cosine_sim_masked = cosine_sim[mask_time_indices] # ... now compare to randomly initialized model config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-large-lv60") model_rand = FlaxWav2Vec2ForPreTraining(config) outputs_rand = model_rand( inputs_dict.input_values, attention_mask=inputs_dict.attention_mask, mask_time_indices=mask_time_indices, ) # compute cosine similarity cosine_sim_rand = optax.cosine_similarity( outputs_rand.projected_states, outputs_rand.projected_quantized_states ) # retrieve cosine sim of masked features cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices] # a pretrained wav2vec2 model has learned to predict the quantized latent states # => the cosine similarity between quantized states and predicted states > 0.5 # a random wav2vec2 model has not learned to predict the quantized latent states # => the cosine similarity between quantized states and predicted states is very likely < 0.1 self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0) @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm(self): ds = load_dataset("common_voice", "es", split="test", streaming=True) sample = next(iter(ds)) resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000) model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(resampled_audio, return_tensors="np").input_values logits = model(input_values).logits transcription = processor.batch_decode(np.array(logits)).text self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")